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On the Shortest Separating Cycle

Adrian Dumitrescu∗

Abstract

According to a result of Arkin et al. (2016), given n
point pairs in the plane, there exists a simple polygonal
cycle that separates the two points in each pair to dif-
ferent sides; moreover, a O(

√
n)-factor approximation

with respect to the minimum length can be computed
in polynomial time. Here we extend the problem to ge-
ometric hypergraphs, and obtain the following charac-
terization of feasibility. Given a geometric hypergraph
on points in the plane with hyperedges of size at least 2,
there exists a simple polygonal cycle that separates each
hyperedge if and only if the hypergraph is 2-colorable.

We extend the O(
√
n)-factor approximation in the

length measure as follows: Given a geometric graph
G = (V,E), a separating cycle (if it exists) can be com-
puted in O(m+ n log n) time, where |V | = n, |E| = m.
Moreover, a O(

√
n)-approximation of the shortest sep-

arating cycle can be found in polynomial time. Given
a geometric graph G = (V,E) in R3, a separating poly-
hedron (if it exists) can be found in O(m + n log n)
time, where |V | = n, |E| = m. Moreover, a O(n2/3)-
approximation of a separating polyhedron of minimum
perimeter can be found in polynomial time.

Keywords: Minimum separating cycle, traveling
salesman problem, geometric hypergraph, 2-colorability.

1 Introduction

Given a set of n pairs of points in the plane with no
common elements, {(pi, qi) | i = 1, . . . , n}, a Shortest
Separating Cycle is a plane cycle (a closed curve,
a.k.a. tour) of minimum length that contains inside ex-
actly one point from each of the n pairs. The problem
was introduced by Arkin et al. [3] motivated by applica-
tions in data storage and retrieval in a distributed sen-
sor network. They gave a O(

√
n)-factor approximation

for the general case and better approximations for some
special cases. On the other hand, using a reduction
from Vertex Cover, they showed that the problem is
hard to approximate for a factor of 1.36 unless P = NP,
and is hard to approximate for a factor of 2 assuming
the Unique Games Conjecture; see, e.g., [21, Ch. 16] for
technical background.
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The assumption that no point appears more than
once, i.e., |{p1, . . . , pn} ∪ {q1, . . . , qn}| = 2n, is some-
times necessary for the existence of a separating cy-
cle; i.e., there are instances of sets of pairs with com-
mon elements and no separating cycle; see for instance
Fig. 1 (left). For convenience, points on the boundary of
the cycle are considered inside; it is easy to see that re-
quiring points to lie strictly in the interior or also on the
boundary are equivalent variants in regards to the exis-
tence of a separating cycle. Moreover, the equivalence
is almost preserved in the length measure: given any
positive ε > 0, and a separating cycle C for n pairs, en-
closing P = {p1, . . . , pn} (say, after relabeling each pair,
if needed), with some of the points of P on its boundary,
a separating cycle of length at most (1 + ε) len(C) can
be constructed, having all points of P in its interior.

In this paper we study the extension of the concept of
separating cycle to arbitrary graphs and hypergraphs,
and to higher dimensions; in the original version intro-
duced by Arkin et al. [3], the input graph is a matching,
i.e., it consists of n edges with no common endpoints.
Two instances with 8 and respectively 3 point pairs that
do not admit separating cycles are illustrated in Fig. 1.

Interestingly enough, even in instances with pairs
where a solution exists, one cannot use the algorithm
from [3]. Their algorithm (in [3, Subsec. 3.5]) starts
by computing a minimum-size square Q containing at
least one point from each pair, and then computes a
constant-factor approximation of a shortest cycle (tour)
of the points contained in Q, in the form of a simple
polygon. In the end, this tour is refined to a separating
cycle of the given set of point pairs with only a small in-
crease in length. Here we note that there exist instances
(like that in Fig. 1) for which there is no separating cycle
confined to Q; moreover, the length of a shortest sepa-
rating cycle can be arbitrarily larger than any function
of diam(Q) and n, and so a new approach is needed for
the general version with arbitrary input graphs, or its
extension to hypergraphs; i.e., the current O(

√
n)-factor

approximation does not carry through to these settings.

We first show that a planar geometric graph G =
(V,E) admits a separating cycle (for all its edge-pairs)
if and only if it is bipartite. This result can be extended
to hypergraphs in Rd. Given a geometric hypergraph
on points in Rd with no singleton edges, there exists a
simple polyhedron that separates each hyperedge if and
only if the hypergraph is 2-colorable.
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Figure 1: Left and center: instances with no separating cycle. Right: instance where the minimum axis-parallel square (or
rectangle) that contains at least one point from each pair does not lead to a solution; a solution is indicated by the red cycle.

Definitions and notations. A hypergraph is a pairH =
(V,E), where V is finite set of vertices, and E is a family
of subsets of V , called edges. H is said to have property
B, or be 2-colorable, if there is a 2-coloring of V such
that no edge is monochromatic; see, e.g., [2, Ch. 1.3].

If C is a (polygonal) cycle, let
◦
C and C denote the

interior and exterior of C, respectively; let ∂C denote
its boundary. Consider a geometric hypergraph H =
(V,E) on points in the plane with no singleton edges.
A polygonal cycle C is said to be a separating cycle for
H if (i) C is simple; and (ii) each edge of H has points
inside C (in its interior or on its boundary) and points
in the exterior of C; that is, for each edge A ∈ E, both

A ∩ (
◦
C ∪ ∂C) and A ∩ C are nonempty.

A simple polygonal cycle is said to have zero area,
if Area(C) ≤ ε, for a sufficiently small given ε > 0.
Similarly, a polyhedron P is is said to have zero volume,
if Vol(P ) ≤ ε, for a sufficiently small given ε > 0.

Preliminaries and related work. Let S be a finite set
of points in the plane. According to an old result of
Few [11], the length of a minimum spanning path (resp.,
minimum spanning tree) of any n points in the unit
square is at most

√
2n + 7/4 (resp.,

√
n + 7/4). Both

upper bounds are constructive; for example, the con-
struction of a short spanning path works as follows. Lay
out about

√
n equidistant horizontal lines, and then visit

the points layer by layer, with the path alternating di-
rections along the horizontal strips. In particular, the
length of the minimum spanning tree of any n points in
the unit square is bounded from above by the same ex-
pression. An upper bound with a slightly better multi-
plicative constant for a path was derived by Karloff [18].
L. Fejes Tóth [10] had observed earlier that for n points
of a regular hexagonal lattice in the unit square, the
length of the minimum spanning path is asymptotically
equal to (4/3)1/4

√
n, where (4/3)1/4 = 1.0745 . . .. As

such, the maximum length of the minimum spanning
tree of any n points in the unit square is Θ(

√
n), for a

small constant (close to 1). The bound also holds for
points in a convex polygon of diameter O(1), in partic-
ular for n points in a rectangle of diameter O(1). In

every dimension d ≥ 3, Few showed that the maximum
length of a shortest path (or tree) through n points in
the unit cube is Θ(n1−1/d); this upper bound is again
constructive and extends to rectangular boxes of diam-
eter O(1).

The topic of “separation” has appeared in multi-
ple interpretations; here we only give a few exam-
ples: [1, 6, 7, 12, 14, 15, 16]. Some results on watchman
tours relying on Few’s bounds can be found in [8]; oth-
ers can be be found in [4]. For instance, in the problem
of finding a separating cycle for a given set of segment
pairs, that we study here, it is clear that the edges of the
cycle must hit all of the given segments. As such, this
problem is related to the classic problem of hitting a set
of segments by straight lines [15]. Coloring of geometric
hypergraphs has been studied, e.g., in [20].

2 Separating Cycles for Graphs and Hypergraphs

By adapting results on hypergraph 2-colorability to a
geometric setting, we obtain the following.

Theorem 1 Let H = (V,E) be a geometric hypergraph
on points in the plane with no singleton edges. Then H
admits a separating cycle if and only if H is 2-colorable.

Proof. For the direct implication, assume that C is a

separating cycle: then for each A ∈ E, both A ∩
◦
C and

A∩C are nonempty. Color the points in the interior of
C by red and those in its exterior by blue. As such, the
hypergraph H is 2-colorable.

We now prove the converse implication. Let V =
R ∪ B be a partition of the points into red and blue
points, such that no edge in E is monochromatic. We
construct a simple polygonal cycle containing only the
red points in its interior. To this end, we first compute
a minimum spanning tree T for the points in R; T is
non-crossing [19, Ch. 6], however there could be blue
points contained in edges of T . Replace each such edge
s with a two-segment polygonal path �s connecting the
same pair of points and lying very close to the original
segment, and so that �s is not incident to any other point.

The resulting tree, �T is still non-crossing and spans
all points in R. By doubling the edges of �T and adding
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short connection edges, if needed, construct a simple
polygonal cycle C of zero area that contains it and lies
very close to it; as such, C contains all red points and
none of the blue points, as required. �

Since hypergraph 2-colorability is NP-complete [13],
Theorem 1 yields the following.

Corollary 1 Given a geometric hypergraph H = (V,E)
on points in the plane with no singleton edges, the prob-
lem of deciding whether H admits a separating cycle is
NP-complete.

A key fact in our algorithm is the following observa-
tion.

Lemma 2 Let G be connected bipartite graph. Then
(apart from a color flip), G admits a unique 2-coloring.

Proof. Recall that a graph is bipartite if and only if it
contains no odd cycle [17, Ch. 3.3]. Consider an arbi-
trary vertex s and color it red. Then the color of any
other vertex, say v, is uniquely determined by the par-
ity of the length of the shortest path from s to v in G:
red for even length and blue for odd length. Indeed, the
vertices are colored alternately on any path, and since
any cycle has odd length, all lengths of paths from s to
v have the same parity, as required. �

Let G = (V,E) be the input geometric graph, where
|V | = n, |E| = m, and G has no isolated vertices.
Let G1, . . . , Gk denote the connected components of G,
where Gi = (Vi, Ei), for i = 1, . . . , k.

Theorem 3 (i) Given a geometric graph G = (V,E), a
separating cycle (if it exists) can be computed in O(m+
n log n) time, where |V | = n, |E| = m. (ii) Further,
a O(

√
n)-approximation of the shortest separating cycle

can be found in polynomial time.

Proof. (i) The graph is first tested for bipartiteness
and the input instance is declared infeasible if the test
fails (by Theorem 1). This test takes O(m + n) time;
see, e.g., [17, Ch. 3.3]. We subsequently assume that
G is bipartite, with vertices colored by red and blue.
Then the algorithm constructs a plane spanning tree
T of the red points (for instance, a minimum spanning
tree), and outputs a simple cycle by doubling its edges
and avoiding the blue points on its edges by bending
those edges as indicated in the proof of Theorem 1. To
this end, the following parameters are computed: δ1 > 0
is the minimum pairwise distance among points in V ,
found in O(n log n) time [19, Ch. 5]. For each edge e
of T , δ2(e) ≥ 0 is the minimum distance from some
blue point to e (δ2(e) = 0 if e is incident to at least
one blue point); and δ3(e) > 0 is the minimum nonzero
distance from a blue point to e (δ3(e) = ∞ if no blue

point is close to e, as described next). The set of val-
ues δ2(e), δ3(e) can be determined using point location
for the blue points (as query points) in a planar tri-
angulated subdivision containing the edges of T , all in
O(n log n) time [5, Ch. 6]. The overall time complexity
of the algorithm is O(m+ n log n).

(ii) The algorithm above is modified as follows; the
first step is the same bipartiteness test. The algorithm
2-colors the vertices in each connected component by
red and blue: Vi = Ri ∪ Bi, for i = 1, . . . , k. By
Lemma 2, the 2-coloring of each component is unique
(apart from a color flip). The initial coloring of a com-
ponent may be subsequently subject to a color flip if
the algorithm so later decides. Obviously, the coloring
of each component is done independently of the others.

Then, the algorithm guesses the diameter of OPT, as
determined by one of the

�
n
2

�
pairs of points in V (by

trying all such pairs). In each iteration, the algorithm
may compute a separating cycle and record its length;
the shortest cycle will be output by the algorithm; some
iterations may be abandoned earlier, without the need
of this calculation.

Consider the iteration in which the guess is correct,
with pair a, b ∈ V ; we may assume for concreteness
that ab is a horizontal segment of unit length; refer to
Fig 2. As such, we have that len(OPT) ≥ 2|ab| = 2. In
this iteration, the algorithm computes a separating cycle
whose length is bounded from above by O(

√
n). First,

the algorithm computes a rectangle Q of unit width and
height

√
3 centered at the midpoint of ab. By the diame-

ter assumption, OPT is contained in Q. In the next step
the algorithm computes a separating cycle C containing
only red points in Q in its interior (however, the initial
coloring of some of the components may be flipped, as
needed). By Lemma 2, the coloring of each component
is unique (modulo a color flip) and so for each of the
components at least one of its color classes is entirely
contained in Q. As such, all points in V not contained
in Q can be discarded from further consideration.

Each of the components Gi, i = 1, . . . , k is checked
against this containment condition: if a component is
found where neither of its two color classes lies in Q,
the algorithm abandons this iteration (and assumed di-
ameter pair, ab = diam(OPT)). For each component
Gi: (i) if Ri ⊂ Q, then the coloring of this component
remains unchanged, regardless of whether Bi ⊂ Q or
Bi �⊂ Q. (ii) if Ri �⊂ Q and Bi ⊂ Q, then the coloring
of this component is flipped: Ri ↔ Bi, so that Ri ⊂ Q
after the color flip.

Once the recoloring of components is complete, the
algorithm computes a minimum spanning tree T of the
red points in Q. Its length is bounded from above by
the length of the spanning tree computed by Few’s algo-
rithm. Since the number of red points does not exceed
n, we have len(T ) = O(

√
n). Finally, T is converted

70



29th Canadian Conference on Computational Geometry, 2017

baba

Figure 2: Left: input bipartite graph. Center: a separating cycle can be computed from the MST of the red points (after color
flips). Right: a shortest separating cycle.

to a separating cycle C by a factor of at most 2 + ε
increase in length, for any given ε > 0, as in the proof
of part (i). Recalling that len(OPT) ≥ 2, it follows
that C is a O(

√
n)-factor approximation of a shortest

separating cycle. �

3 Remarks

1. If the input consists of a set of pairs so that the
corresponding graph is bipartite, then by Theorem 1, it
admits a separating cycle. (If the corresponding graph
is not bipartite, no separating cycle exists.) Similarly, if
the input is a 2-colorable hypergraph, it admits a sepa-
rating cycle. For illustration, we recall some common
instances of 2-colorable hypergraphs. A hypergraph
H = (V,E) is called k-uniform if all A ∈ E have |A| = k.
A random 2-coloring argument gives that any k-uniform
hypergraph with fewer than 2k−1 edges is 2-colorable [2,
Ch. 1.3]; as such, by Theorem 1, it admits a separating
cycle. Slightly better bounds have been recently ob-
tained; see [2, Ch. 3.5]. Similarly, let H = (V,E) be
a hypergraph in which every edge has size at least k
and assume that every edge A ∈ E intersects at most Δ
other edges, i.e., the maximum degree inH is at mostΔ.
If e(Δ+1) ≤ 2k−1 (here e =

�∞
i=0 1/i! is the base of the

natural logarithm), then by the Lovász Local Lemma,
H can be 2-colored [2, Ch. 5.2] and so by Theorem 1,
it admits a separating cycle; moreover, if a 2-coloring is
given, it can be used to obtain a separating cycle. While
testing for 2-colorability can be computationally expen-
sive in a general setting (for certain problem instances),
it can be always achieved in exponential time; recall
that hypergraph 2-colorability is NP-complete [13].

2. Theorem 3 generalizes to 3-dimensional polyhe-
dra. A polyhedron in 3-space is a simply connected
solid bounded by piecewise linear 2-dimensional mani-
folds. The perimeter per(P ) of a polyhedron P is the
total length of the edges of P (as in [8]).

For part (i), a method similar to that used in the pla-
nar case can be used to construct a separating polyhe-
dron in R3 (or Rd). However, since computing minimum

spanning trees in R3 is more expensive [9, Ch. 9], we
employ a slightly different approach. We may assume
a coordinate system so that no pair of points have the
same x-coordinate. First, the points in V are colored
by red or blue as a result of the bipartiteness test, in
O(m+ n) time. The algorithm then computes a (span-
ning tree of the red points in the form of a) x-monotone
polygonal path P spanning all the red points; this step
takes O(n log n) time. From P , it then obtains a x-

monotone polygonal path �P spanning all the red points
and not incident to any blue point (P = �P if no blue

points are incident to edges of P ); �P is constructed in
O(n log n) time.

To this end, P and all blue points are projected onto
the xoy plane. Let σ(·) denote the projection function.
Note that σ(P ) is x-monotone and that the projection
σ(b) of a blue point b can be incident to at most one edge
of σ(P ). Checking the projection points σ(b) against
corresponding edges of σ(P ) allows for testing whether
the original edges of P are incident to the respective
blue points. Further, this test allows replacing each such
edge s with a two-segment polygonal path �s connecting
the same pair of points and lying very close to the orig-
inal segment, and so that �s is not incident to any other
point. Finally the algorithm computes a polyhedron of
zero volume that contains �P ; as such, the polyhedron
contains all red points but no blue points; this step takes
O(n log n) time. Some details are omitted.

For part (ii), instead of a rectangle based on segment
ab as an assumed diameter pair, the algorithm works
with a rectangular box where ab is parallel to a side of
the box and is incident to its center. The upper bound
on the perimeter of the separating polyhedron follows
from Few’s bound mentioned in the preliminaries.

Theorem 4 (i) Given a geometric graph G = (V,E) in
R3, a separating polyhedron (if it exists) can be found in
O(m+ n log n) time, where |V | = n, |E| = m. (ii) Fur-
ther, a O(n2/3)-approximation of a separating polyhe-
dron of minimum perimeter can be found in polynomial
time.
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