
CCCG 2017, Ottawa, Ontario, July 26–28, 2017

Upward order-preserving 8-grid-drawings of binary trees

Therese Biedl∗

Abstract

This paper concerns upward order-preserving straight-
line drawings of binary trees with the additional con-
straint that all edges must be routed along edges of the
8-grid (i.e., horizontal, vertical, diagonal) or some sub-
set thereof. We give an algorithm that draws n-node
trees with width O(log2 n), while the previous best re-
sult were drawings of width O(n0.48). If only some of
the grid-lines are allowed to be used, then the algo-
rithm gives (with minor modifications) the same upper
bounds for the {�, |,�}-grid and the {|,�,—}-grid.
On the other hand, in the {�,�,—}-grid sometimes
Ω(

�
n/ log n) width is required.

1 Introduction

There are many algorithms to draw trees, especially
rooted trees, because different applications impose dif-
ferent requirements on the drawing. In this paper, the
drawing should satisfy the following constraints:

• It is planar, i.e., no vertices or edges overlap unless
the corresponding graph-elements do.

• It is straight-line, i.e., every edge is drawn as a
straight-line segment that connects the correspond-
ing vertices.

• It is strictly-upward, i.e., parents have larger y-
coordinates that children. (For some of the results
this is relaxed to upward drawings where edges may
be horizontal.)

• It is order-preserving, i.e., a given left-to-right order
of children at each node must be respected in the
drawing.

Such drawings were called ideal drawings previously [3].
All drawings in this paper must be planar and straight-
line, and this will not always be mentioned. Further,
vertices must always be placed at grid-points, i.e., with
integer coordinates. Any drawing is assumed (after pos-
sible translation) to reside within the [1,W]×[1, H]-grid

∗David R. Cheriton School of Computer Science, Uni-
versity of Waterloo, Waterloo, Ontario N2L 1A2, Canada.
biedl@uwaterloo.ca Supported by NSERC. The author would
like to thank Timothy Chan and Stephanie Lee for inspiring dis-
cussions.

whereW andH are the width and height. Column i con-
sists of all grid-points with x-coordinate i; row j consists
of all grid-points with y-coordinate j. Since the height
may have to be Ω(n) in a strictly-upward drawing, the
objective of this paper is to find ideal drawings of binary
trees that have small width.

There are many results concerning how to draw
rooted trees; see for example [5] for an overview, [2]
for some recent results, and Table 1 for the results espe-
cially relevant to this paper. This paper focuses on grid-
drawings, which means that the edges must be drawn
along the lines of a grid. This is well-studied for so-
called orthogonal drawings, where the grid is the rectan-
gular grid (also called the 4-grid) and hence all edges are
horizontal or vertical. Creszenci et al. [4] showed that
every binary n-node tree has an upward straight-line
4-grid-drawing in an O(log n) × O(n)-grid (the draw-
ing need not be order-preserving). For complete binary
trees as well as for Fibonacci trees, they achieve an
O(

√
n) × O(

√
n)-grid. For order-preserving drawings,

significantly more area may be needed: Frati [6] showed
that Ω(n) width and height is necessary for some binary
trees in an upward straight-line 4-grid drawing.

The focus of this paper is the octagonal grid or 8-
grid that has horizontal, vertical and diagonal lines
in both directions. Drawings in the 8-grid could also
be called ASCII-drawings, since they could easily be
done in ASCII using characters / | _ \. Creszenci
et al. [4] argue that their upward 4-grid-drawings can
easily be converted into strictly-upward 8-grid-drawings
via a downward shear. This preserves the same width
and gives asymptotically the same height, hence any bi-
nary tree has an (unordered) strictly-upward drawing
in an O(log n)×O(n)-grid. For order-preserving draw-
ings, only much weaker bounds are known. Chan [3]
studied ideal drawings of binary trees (not necessarily
with edges along the grid). As he points out, the first
and second of his four algorithms adapt easily to cre-
ate ASCII-drawings of binary trees. The width of these
depends much on the chosen spine (a concept that will
be used in Theorem 1 as well); with a suitable choice
Chan achieves ideal 8-grid-drawings of width O(n0.48)
and height O(n).

Results of this paper: In this paper, we show how to
create ideal 8-grid-drawings of binary trees. The pre-
vious best known bounds here are drawings of width

232

29th Canadian Conference on Computational Geometry, 2017

Grid-lines Upward? Order-preserving width upper bound width lower bound

{|,—} upward no O(log n) [4] Ω(log n) [4]
{|,—} upward yes O(n) (folklore) Ω(n) [6]
{|,�} strictly-upward no O(log n) [4] Ω(log n) [4]
{�,�} strictly upward yes O(n) (folklore) Ω(n) (Thm.2)
{|,�} strictly upward yes O(n) (folklore) Ω(n) (Thm.2)

{�, |,�} strictly upward yes O(n0.48) [3] Ω(log n) [4]

O(log2 n) (Thm.1)

{|,�,—} upward yes O(log2 n) (Thm.3) Ω(log n) [4]

{�,—,�} upward no O(n) (folklore) Ω(
�
n/ log n) (Thm.4)

Table 1: Results for planar, upward, straight-line grid-drawings of binary trees. Some more results can be derived
in the obvious way, e.g. the upper bound for the {�, |,�}-grid also holds for the 8-grid.

O(n0.48) [3]. This paper improves this to create draw-
ings that have width O(log2 n). In fact, the width is
rpw(T)2, where the rooted pathwidth rpw(T) is a lower-
bound on the width of any upward drawing of a tree
T (even if it need not be order-preserving or straight-
line). Since rpw(T) ≤ log(n+1) [2], our algorithm can
be viewed as an (log(n+1))-approximation algorithm for
the width of ideal 8-drawings. We also study what hap-
pens if one set of the parallel grid-lines is removed; de-
pending on which set is removed we can either achieve
the same width-bound or argue that a lower bound of
Ω(

�
n/ log n) holds on the width. See Table 1.

2 Background

Let T be a rooted tree with n nodes that is binary, i.e.,
every node has at most two children. For any node v,
use Tv to denote the subtree rooted at v.

3

3

3

3

2

2

2

1

1

1

1

1

1

11

2

1

The rooted pathwidth rpw(T) of a
rooted tree is defined as follows [2]: If
every node of T has at most one child,
then rpw(T) = 1. (In other words, T
is a path from the root to the unique
leaf.) Otherwise, set rpw(T) := 1 +
minP maxT �⊂T−P rpw(T �). Here the
minimum is taken over all paths P for
which one end is at the root of T , and
the maximum is taken over all subtrees
that result when deleting all nodes of
P from T . A path P where the mini-
mum is achieved is sometimes called an rpw-main-path,
though this paper uses the term spine to mimic the no-
tations of [7]. The figure above shows a tree with the
rooted pathwidth indicated for all nodes; one possible
spine is bold.

3 Ideal 8-grid drawings of binary trees

Theorem 1 Let T be a rooted binary tree. Then T has
an ideal 8-grid-drawing of width at most (rpw(T))2.

Proof. The proof is strongly inspired by the algorithm
of Garg and Rusu [7] that give ideal drawings of binary
trees of width O(log n). (Their drawings are not neces-
sarily in the 8-grid.) Their key idea was to use drawings
that are “stretchable” in the sense that for any given
α ≥ 0 one can prescribe the contents of the top α rows
of the drawing. This then allows to merge drawings of
subtrees in a recursive construction. For grid-drawings
we need a slightly modified definition as follows:

Definition 1 Let T be a rooted binary tree with
rpw(T) = r, and let α ≥ 0 be given. An 8-grid-drawing
of T is called a left-α-drawing if within the first α rows,
all points in columns r + 1 and further to the right are
unused.

Put differently, within the top α rows, only the left-
most r columns may be used for placing vertices and
edges. Note that (in contrast to [7]) this definition of
a left-α-drawing makes no restrictions where the root
must be placed (other than that it must be within the
leftmost r columns).1 Define symmetrically a right-α-
drawing to be one where within the first α rows only the
rightmost r columns may be used.

We need two more types of drawings. Define a left-
corner-drawing and a right-corner-drawing to be a draw-
ing of T where the root is at the top-left (top-right)
corner. The main claim, to be proved by induction on
rpw(T), is the following:

Claim 1 Fix an arbitrary α ≥ 0. Then T has a left-α-
drawing, a right-α-drawing, a left-corner-drawing and a
right-corner-drawing, and all four drawings have width
at most (rpw(T))2.

To prove this claim, consider the base case where
rpw(T) = 1. This implies that T is a path from the
root to a single leaf. Such a path can easily be drawn

1Inspection of the construction given below reveals that the
root is always in column 1 or r, but we will not make use of this.

233

CCCG 2017, Ottawa, Ontario, July 26–28, 2017

with width 1 = 12, and this satisfies the conditions for
all four drawings.

Now assume that r := rpw(T) ≥ 2. From the
definition of rooted pathwidth, we know that T has
a spine P such that all subtrees T � of T − P sat-
isfy rpw(T �) ≤ rpw(T) − 1. Let the vertices of P be
v0v1 . . . vm where v0 is the root.2 For simplicity of de-
scription, assume that every spine-node vi �= v0 has
a sibling; if it does not then simply add a sibling and
delete it in the obtained drawing later. Adding a sibling
that is a leaf does not affect the rooted pathwidth since
rpw(T) ≥ 2, so this does not affect the width-bound.
Thus from now on every spine-node except vm has a
left and a right child.

We explain here only how to create the left-α-drawing
and the left-corner-drawing; the other two drawings are
obtained in a symmetric fashion. There are three cases,
depending on whether v1 is the left or right child of v0,
and which type of drawing is desired.

Case 1: v1 is the left child of v0. In this case,
the same construction works for both a left-α-drawing
and a left-corner drawing (for the latter, use α := 1
below). Place the root v0 at the top-left corner. Let s0
be the right child of v0, and recursively obtain a left-α�-
drawing D(Ts0) of Ts0 , where α

� = α−1. Place D(Ts0),
flush left with column 2 and sufficiently far below such
that the �-diagonal from v0 ends exactly at s0. Next
obtain recursively a left-corner-drawing D(Tv1) of Tv1 ,
and place it below D(Ts0), flush left with column 1.
Connect (v0, v1) vertically (both are in column 1). This
finishes the construction.

Note that rpw(Ts0) ≤ rpw(T)−1 = r−1 by definition
of rooted pathwidth and the spine. Therefore D(Ts0)
uses only the leftmost r − 1 columns within the first α�

rows. So this gives a left-α-drawing with the root in the
top left corner, as desired. As for the width, D(Ts0) has
width at most (r−1)2 while D(Tv1) has width at most
r2; therefore the width is at most max{1+(r−1)2, r2} =
r2 as desired.

Case 2: v1 is the right child of v0, and we want a
left-corner-drawing. Let s0 be the left child of v1.
Recursively find a left-corner-drawingD(Ts0) of Ts0 , say
that it has height H �. D(Ts0) has width at most (r−1)2

since rpw(Ts0) < rpw(T). Recursively find a right-H �-
drawing D(Tv1) of Tv1 of width r2. (If its width is
smaller than r2, then pad it with empty columns on the
left.) Thus within the topmost H � rows of D(Tv1), the
leftmost r2−r > (r−1)2 columns are empty. D(Ts0) fits
within this empty space; place it flush left with column
1. Finally place v0 vertically above s0 (i.e., in column

2The notation here is the same as in [7], though their spine is
chosen differently as to always use the heaviest child, rather than
the one that has the largest rooted pathwidth.

1) and high enough so that the �-diagonal from v0 ends
exactly at v1. This gives a left-corner-drawing of width
r2 as desired.

v0

v1

s0

D(Tv1)

D(Ts0)

α−1

r

r−1

v0

v1
s0

D(Tv1)

D(Ts0) r

Figure 1: The construction in Case 1 and Case 2.

Case 3: v1 is the right child of v0, and we want an α-
drawing. This is the most complicated case where a
longer section of the spine may get drawn before recurs-
ing. Figure 2 illustrates the construction. Recall that
every spine-vertex vi �= v0 has a sibling by assumption;
as in [7] let si−1 be the sibling of vi. Let k ≥ 1 be the
smallest integer such that vk is either vm or sk is the
left child of vk.

First place vertices v1, . . . , vk of the spine; vertex v0
will be added later. Thus, place v1 in column r. Now
repeat for 1 ≤ i ≤ k − 1: recursively find a left-corner-
drawing D(Tsi) of Tsi , place it flush left with column
r + 1 and one row below vi, then place vi+1 in column
r and in the last row used by D(Tsi). This ends with
vertex vk having been placed in column r. Extend a
�-diagonal from vk; this will later be used to complete
edge (vk, vk+1). Next, recursively obtain a left-corner-
drawing D(Tsk) of Tsk , and place it, flush left with col-
umn r and (r − 1)2 rows below the row of vk.

Note that D(Tsk) has width at most (r− 1)2. There-
fore (in the drawing of width r2 that is being created)
there are r2 − (r− 1)2 − (r− 1) = r columns free to the
right of D(Tsk). These will be used for Tvk+1

later. Also
note that in the topmost row of D(Tsk), the �-diagonal
from vk is within the rightmost r rows, and hence it
does not interfere with D(Tsk).

Let H � be the total number of rows that are used
thus far, i.e., from the row of v1 to the bottommost row
of D(Tsk). Note that columns 1, . . . , r − 1 are (thus
far) entirely free. Recursively find a left-α�-drawing of
Ts0 , where α� = H � + α − 1. Place it, starting α − 1
rows above v1 and flush left with column 1. Within
the top α� rows this uses only columns 1, . . . , r − 1 by
rpw(Ts0) < rpw(T), and hence this does not intersect
the previously placed subtrees.

Place v0 vertically above v1 (i.e., in column r) and
high enough so that the�-diagonal from v0 ends exactly

234

29th Canadian Conference on Computational Geometry, 2017

at s1.
Let H �� be the number of rows from the row of sk

to the bottommost row of D(Ts0). Recursively find a
right-H ��-drawing D(Tvk

) of Tvk . Place it, flush right
with the rightmost column, and in the row of sk or
below such that the �-diagonal extending from vk ex-
actly meets the point containing vk−1. Within the top-
most H �� rows, drawing D(Ts0) uses only the rightmost
r columns. Recall that r columns remained free next to
D(Tsk), and also r columns are free next to D(Ts0) since
this drawing has width at most (r− 1)2. Thus drawing
D(Tvk) does not interfere with previously placed draw-
ings. This gives the desired left-α-drawing of width r2.

This ends the construction for all cases and proves
Theorem 1. �

v0

s0

v1
α−1

D(Ts1)

s1

D(Ts2)

s2

v2

vk

D(Tsk)

sk
vk+1

D(Tvk+1
)

r

D(Ts0)

(r−1)2r−1

H �

H ��

(r−1)2 + 1

Figure 2: The construction in Case 3.

Height-consideration: In most previous tree-drawing
papers, the height is easily shown to be O(n), because
all rows (or nearly all rows) intersect at least one vertex.
In contrast to this, the construction here has many rows
(e.g. most of the rows 1, . . . , r2 in the construction for
Case 2) that intersect only edges.

One can easily argue that the height is at most O(n ·
(rpw(T))2), because (as one can see) any row without
vertex in it intersects a diagonal edge, any such diagonal
edge intersects at most rpw(T)2 rows, and these rows
can be assigned to the upper endpoint of the diagonal
edge.

If one follows the construction exactly as described,
then Ω(nr2) height (for r = rpw(T)) may result. (For
example, consider a tree where the spine has length Ω(n)
and nearly all siblings of spine-vertices are leaves, but
the last few siblings have big enough subtrees to force
rooted pathwidth r.) However, there are some obvious
possible improvements to the height. To give just one,
in Case 2 the drawing D(Ts0) could be moved much
higher, directly under the �-diagonal, because due to
the strict-upwardness of the drawing, the ith row of it is
empty in column i+1 and farther right. This alone is not
enough to ensure a smaller height, but we suspect that
combining this with drawing the spine more carefully
when some siblings have very small size may lead to
a drawing of width O(log2 n) and height O(n). This
remains for future work.

4 Ideal 6-grid drawings of binary trees

Now we turn to the 6-grid, which has grid-lines with
angles of 60◦ between them. Frequently it is easier to
think of it instead as a grid that has three of the four sets
of grid-lines of the 8-grid (e.g., horizontal, rightward,
and �-diagonals). Bachmeier et al. [1] studied 6-grid
drawings of trees. Their drawing were not (necessarily)
upward, and as such, it was irrelevant which of the grid-
lines of the 8-grid are used for the 6-grid, since they are
all the same after 90◦ rotation and/or a shear, and a
shear does not affect the asymptotic area.

In contrast to this, we study here upward drawings
of binary trees in the 6-grid, and as before, focus on
keeping the width small. As will be seen, here it makes a
difference exactly which grid-lines are used to represent
the 6-grid.

The following grids will be studied:

• The {�, |,�}-grid: grid-lines are
vertical or along a 45◦ diagonal in
either direction.

• The {�,�,—}-grid: grid-lines
are horizontal or along a 45◦ di-
agonal in either direction.

• The {|,�,—}-grid: grid-lines are
horizontal or vertical or along one
of the 45◦ diagonals. (For the
{�, |,—}-grid a symmetric set of
results is obtained by using a hor-
izontal flip.)

235

CCCG 2017, Ottawa, Ontario, July 26–28, 2017

We have thus far mostly studied ideal drawings, which
must be strictly-upward and hence horizontal lines are
disallowed. In particular, Theorem 1 created strictly-
upward drawings in the 8-grid, which hence are auto-
matically drawings in the {�, |,�}-grid. Therefore ev-
ery binary tree T has an ideal drawing that is an em-
bedding in the {�, |,�}-grid and has width at most
(rpw(T))2.

Now we turn to other types of 6-grids. Again, having
an ideal drawing means being strictly-upward, so no
horizontal lines can be used. We show that then no
small width is possible.

Theorem 2 There exists a binary tree T such that any
ideal drawing of T in the {|,�}-grid or the {�,�}-grid
requires width and height Ω(n).

Proof. Let T consist of a path of length n/2 and attach
at each node a left child that is a leaf. For an order-
preserving and strictly-upward drawing, the path must
be drawn following the �-diagonals. This gives a width
and height of at least n/2− 1. �

Therefore, the remaining drawing-results will be in a
relaxed model of ideal drawings where horizontal edges
are allowed, hence the drawing is upward rather than
strictly-upward. Call these weakly-ideal drawings. (As
before all drawings must be planar, straight-line and
order-preserving.)

Theorem 3 Every binary tree T has a weakly-ideal
drawing that is an embedding in the {|,�,—}-grid and
has width at most (rpw(T))2.

Proof. The proof is very similar to the proof of The-
orem 1. As before, define (left/right) corner-drawings
and (left/right) α-drawings. Additionally now demand
for all these drawings that in the topmost row no point
to the right of the root is occupied (we say that the root
is right-free).

Create left-corner-drawings and left-α-drawings al-
most exactly as before. The only difference is that at the
places where a �-diagonal was used before, we now use
a horizontal edges instead; this is feasible because the
root of corresponding subtree is right-free. For right-
corner and right-α-drawings, the constructions are not
entirely symmetric anymore, but again, by using hori-
zontal edges rather than diagonal ones, drawings can be
constructed. Figure 3 illustrates the constructions in all
cases; the details are left to the reader. �

Finally consider the {�,�,—}-grid, which is the
same as the 8-grid where no vertical edges are allowed.
Theorem 2 showed that ideal drawings have to have
large width. We show here that even weakly-ideal draw-
ings may require large with. In fact, the following
bound holds for any planar straight-line drawing in the

v0

v1

s0

D(Tv1)

D(Ts0)

α−1

r

r−1

v0

v1

s0

D(Tv1)

D(Ts0)

α

r

r−1

v0

v1
s0

D(Tv1)

D(Ts0) r

v0v1

s0

D(Tv1)

D(Ts0)r

D(Ts2)

v0s0

v1

α

D(Ts1)

s1

D(Ts2)

s2

v2

vk

D(Tsk)

sk

vk+1

D(Tvk+1
)

r

D(Ts0)

(r−1)2r−1

v0

s0

v1

α

D(Ts1)
s1

D(Ts2)
s2 v2

vk

D(Tsk)
sk

vk+1

D(Tvk+1
)

r

D(Ts0)

(r−1)2 r−1

Figure 3: The construction for the {|,�,−}-grid.

{�,�,—}-grid, even if it is not upward or not order-
preserving.

Theorem 4 The complete binary tree must have width
O(

�
n/ log n) in any straight-line drawing in the

{�,�,—}-grid.

Proof. The proof is very similar to the “simplest”
method for obtaining a width-lower-bound for weakly-
ideal drawings of the complete ternary tree, see [8]. We

236

29th Canadian Conference on Computational Geometry, 2017

repeat the argument here for completeness. Fix an arbi-
trary straight-line drawing of the complete binary tree
in the {�,�,—}-grid, say it has w columns. So any
edge spans a horizontal distance of at most w−1. Since
only horizontal and diagonal edges are allowed, there-
fore any edge spans a vertical distance of at most w−1.

Observe that T has height h := log
�
n+1
2

�
, i.e., the

path from the root to each leaf contains h edges. In
consequence, any node has vertical distance at most
h(w − 1) from the root. Therefore the entire drawing
is contained within a rectangle that has w columns and
up to h(w − 1) rows above and below the root, hence
2h(w−1)+1 rows in total. Therefore the drawing resides
in a grid with at most 2wh(w−1)+w grid points. Since
all n nodes are placed on these grid-points, necessarily

n ≤ 2wh(w − 1) + w ∈ O(w2 log n),

which implies w ∈ Ω(
�
n/ log n). �

We strongly suspect that a lower bound of Ω(
√
n) on

the width holds, but this remains for future work. For
the complete binary tree, it is easy to find a construc-
tion that has width and height O(

√
n), and in fact, no

horizontal edges are used.

Theorem 5 (based on [4]) The complete binary tree
has an ideal drawing in the {�,�}-grid of grid-size
O(

√
n)×O(

√
n).

Proof. Crescenzi et al. gave a simple recursive con-
struction that draws the complete binary tree in a 4-
grid of size O(

√
n)×O(

√
n) [4]. Moreover, all edges go

rightward or downward. Scale this drawing by
√
2 and

then rotate it by 45◦ clockwise. Due to the scaling, this
maps all vertices to grid-points, and all edges are now
diagonal and downward as desired. �

5 Remarks

This paper developed algorithms for weakly-ideal 8-
grid-drawings of binary trees, i.e., planar upward
straight-line order-preserving drawings with edges
drawn along grid-lines for the 8-grid (or some subset
therefore). We gave constructions of width O(log2 n)
for a number of such grids. The height is rather large
(O(n log2 n)), and improving this remains an open prob-
lem. We also showed that width O(

�
n/ log n) is re-

quired for the grid where no vertical lines are allowed.
A natural question is whether similar bounds could

be proved for ternary trees. For unordered drawings,
Bachmeier et al. [1] gave simple recursive constructions
that achieve width O(nlog3 2) ≈ O(n0.631). In work done
simultaneously with the current paper, Lee studied or-
dered drawings of ternary trees and proved that every
ternary tree has such a weakly-ideal 8-grid drawing of
width Ω(n0.68) [8]. Furthermore, the complete ternary

tree requires width Ω(n0.411) in any upward octagonal-
grid-drawing [8]. Both the constructions and the lower
bounds in Lee’s thesis are significantly more compli-
cated than the ones given here, and will be published
separately.

As for open problems, the obvious one is to close the
“gap” between the width O(log2 n) achieved with our
algorithm and the lower bound of Ω(log n) for the com-
plete binary tree. Are there binary trees that require
ω(log n) width in ideal 8-grid drawings?

The other remaining gap concerns drawings in the
{�,�,—}-grid-grid. Can we achieve a width of O(

√
n)

not just for complete binary trees but for all trees?

References

[1] Christian Bachmaier, Franz-Josef Brandenburg,
Wolfgang Brunner, Andreas Hofmeier, Marco
Matzeder, and Thomas Unfried. Tree drawings on
the hexagonal grid. In Ioannis G. Tollis and Maur-
izio Patrignani, editors, Graph Drawing (GD 2008),
volume 5417 of Lecture Notes in Computer Science,
pages 372–383. Springer, 2009.

[2] Therese Biedl. Ideal tree-drawings of approximately
optimal width (and small height). Journal of Graph
Algorithms and Applications, 21(4):631–648, 2017.

[3] Timothy M. Chan. A near-linear area bound for
drawing binary trees. Algorithmica, 34(1):1–13,
2002.

[4] Pierluigi Crescenzi, Giuseppe Di Battista, and
Adolfo Piperno. A note on optimal area algo-
rithms for upward drawings of binary trees. Comput.
Geom., 2:187–200, 1992.

[5] Giuseppe Di Battista and Fabrizio Frati. A survey
on small-area planar graph drawing, 2014. CoRR
report 1410.1006.

[6] Fabrizio Frati. Straight-line orthogonal drawings of
binary and ternary trees. In Seok-hee Hong, Takao
Nishizeki and Wu Quan, editors, Graph Drawing
(GD 2007), volume 4875 of Lecture Notes in Com-
puter Science, pages 76–87, Springer, 2007.

[7] Ashim Garg and Adrian Rusu. Area-efficient order-
preserving planar straight-line drawings of ordered
trees. Int. J. Comput. Geometry Appl., 13(6):487–
505, 2003.

[8] Stephanie Lee. Upward octagonal drawings
of ternary trees. Master’s thesis, Univer-
sity of Waterloo, August 2016. (Supervi-
sors: T. Biedl and T. Chan.) Available at
https://uwspace.uwaterloo.ca/handle/10012/10832.

237

