
CCCG 2017, Ottawa, Ontario, July 26–28, 2017

On the minimum edge size for 2-colorability and realizability of hypergraphs
by axis-parallel rectangles
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Abstract

Given a hypergraph H = (V , E) what is the minimum
integer λ(H) such that the sub-hypergraph with edges of
size at least λ(H) is 2-colorable? We consider the com-
putational problem of finding the smallest such integer
for a given hypergraph, and show that it is NP-hard
to approximate it to within logm where m = |E|. For
most geometric hypergraphs, i.e., those defined on a set
of n points by intersecting it with some shapes, it is
well known that there is a coloring with 2 colors ‘red’
and ‘blue’, such that any hyperedge containing c log n
points, for some constant c, is bi-chromatic, i.e., con-
tains points of both colors. We observe that indeed,
for several such hypergraph families, this is the best
possible – i.e., there are some n points where there
will always be a hyperedge with Ω(log n) points that
is mono-chromatic. These results follow from results
on the indecomposability of coverings. We also show
that a frequently used hypergraph, used in the litera-
ture on indecomposable coverings cannot be realized by
axis-parallel rectangles in the plane. This problem was
mentioned in a paper of Pach et al. on indecomposable
coverings.

1 Introduction

Given a hypergraph H = (V , E), suppose every element
of V is assigned one of two colors ‘red’ and ‘blue’. An
edge e ∈ E is properly colored if not all elements of e re-
ceive the same color. The property of being 2-colorable
is a well studied problem in combinatorics. It is also
known as “Property B”, a term coined by E.W. Miller
[12] in honor of Felix Bernstein 1. For many geomet-
ric hypergraphs, i.e., hypergraphs defined by a set of n
points by intersecting it with some geometric shapes, it
is known that the sub-hypergraph of all edges of size at
least t ≥ c log n for some constant c has property B. A
natural question is to ask what is the smallest possible
value of t with this property? Denote this minimum by
λ(H). In this paper we investigate this question, with a
focus on some geometric hypergraphs.
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1Sometimes, Property B is only defined for hypergraphs where

each edge has the same size, but we use it for general hypergraphs.

Property B. A simple probabilistic argument of
Erdős[4] shows that if each edge size is at least p, and
the hypergraph has at most 2p−1 edges, it is 2-colorable.
Erdős and Hajnal [5] asked: What is the smallest num-
ber of edges in a hypergraph each of which have size p,
without Property B. They showed that m(p) < 4p 2.
In geometric hypergraphs on n points in IRd, bounded
VC-dimension arguments [10] often mean that the total
number of edges is at most O(nd). Thus, if p ≈ c log n,
for some constant c, since 2p−1 exceeds the number of
edges, the sub-hypergraph with edge size at least p has
property B.

Cover decomposability. The problem we study is re-
lated to the concept of cover decomposability, a topic
that has been the subject of much recent research, see
the survey [15]. Consider a family of sets S in the plane
(or space). Now, given a finite set of points P , one can
define a primal hypergraph H = (P,R) by intersecting
the sets in S with P . Likewise, one can define a dual
hypergraph H∗ by restricting to a finite sub-family of
S, and an edge for each point of the plane (or space)
defined by the sets in the sub-family that contain it.
In cover decomposability one is interested in the prob-
lem : Is λ(H∗) = O(1)? A result of Pach [13] implies
that if one is looking at the family of translates of an
open convex polygon, the problems for the primal and
dual hypergraphs are equivalent, i.e., λ(H) = O(1) iff
λ(H∗) = O(1). There are many positive and negative re-
sults known about cover decomposability, for example,
the family of all translates of a given open convex poly-
gon is cover decomposable [18], disks and other convex
shapes with a smooth boundary are not cover decom-
posable [14], but if the convex set is unbounded then it
is cover decomposable; translates of concave polygons
(most of them) are known to be not cover decompos-
able [17]. The family of all homothets of a triangle is
cover decomposable [6, 7] but homothets of any con-
vex polygon with at least four sides are not cover de-
composable [8]. The family of axis-parallel rectangles is
also not cover decomposable [16]. The problem of when
λ(H) (i.e., for the primal hypergraphs) is O(1) has also
received recent attention - for example, it has been re-
cently shown to be true for squares [1], while it is known
to be false for axis-parallel rectangles [3]. As mentioned

2Better bounds are now known.
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before, results for the dual setting also imply results
for the primal setting for families which are translates
of open convex polygons. Techniques for proving in-
decomposability of coverings are very useful for lower
bounding λ(H). Typically, this is done by proving that
a certain hypergraph which is not 2-colorable can be
realized by the dual (or primal) geometric hypergraph.

Our contributions. Our contributions can be summa-
rized as follows:

(I) We show that for a given hypergraph H = (V, E)
it is NP-hard to approximately compute λ(H) up-
to a factor of logm, where m = |E|.

(II) We show that a certain frequently used hyper-
graph, which has been used before in proving
indecomposability of coverings, cannot be real-
ized by axis-parallel rectangles. This problem was
mentioned in a paper of Pach et al. [16].

Paper organization. In Section 2 we provide defini-
tions, set up notation, and provide some simple results
on λ(H). We prove the computational hardness of ap-
proximating λ(H) in Section 3. In Section 4 we observe
that known constructions from the indecomposability
of coverings literature imply lower bounds on λ(H) for
some primal and dual geometric hypergraphs. In Sec-
tion 5 we prove our result on the non-realizability of a
hypergraph from [16] as the primal hypergraph of axis-
parallel rectangles.

2 Preliminaries and Basic Results

A hypergraph H = (V , E) is a finite set V along with
a collection E of subsets of V. Given a hypergraph
H = (V , E), and an integer t with 0 ≤ t ≤ |V|, define
the t-level hypergraph Ht to be the hypergraph (V , Et)
where Et = {e ∈ E | |e| ≥ t}. We define the property
B threshold, λ(H), to be the minimum integer t with
2 ≤ t ≤ |V| such that (V , Et) has property B. For a hy-
pergraph H = (V , E) where |e| = k ≥ 2 for every e ∈ E
we have λ(H) = 2 iff (V , E) has property B. 3

A family of hypergraphs. We often work with families
of hypergraphs, which are collections of “related” hyper-
graphs, such that for every integer n we have (possibly
several) hypergraphs (V , E) in the family with |V| = n.
In such cases, we will be interested in deriving lower
bounds on λ(H) as a function of n – such a bound will
be worst case, i.e., for almost all values of n, there will
be some hypergraph H with n vertices in the family with
λ(H) lower bounded by the function. Some important

3Notice that we do not require that there is an edge e ∈ E with
|e| = λ(H). For example, the hypergraph with a single edge of
large cardinality obviously has property B, and we have λ(H) = 2,
but there is no edge of size 2.

families are defined geometrically and are of special in-
terest to us. Let S be a family of sets in IRd (for exam-
ple, all axis-parallel boxes, or balls, or convex polytopes
etc.) Two families can be defined as follows:
(A) Primal geometric family. A hypergraph in the

family is defined by a set P of n points as H =
(P, E) where the edges are defined by intersecting
P with members of S.

(B) Dual geometric family. A hypergraph H∗ in the
family is defined by a finite sub-family S∗ of S;
H∗ = (S∗, E∗) where for each point p of space, an
edge e∗ ∈ E∗ is defined by looking at all the sets in
S∗ that contain p.

We now introduce some hypergraphs which are not
2-colorable. They have been used previously to prove
indecomposability of coverings in [16, 17, 14]. Given a
rooted tree T = (V,E), define a hypergraph H(T ) =
(V(T ), E(T )), where V(T ) = V and the set of edges
E(T ) is the union EL(T ) ∪ ES(T ). An edge in EL(T ) is
the set of vertices on a root-to-leaf path, and an edge
of ES(T ) is the set of vertices which are the children of
some internal node. Observe that the number of edges
of edges is precisely |V(T )| = |V |. For a given integer
k ≥ 2, let Tk denote the rooted tree where every internal
node has degree k and the height is k − 1. It is clear

that the hypergraph H(Tk) is k-regular and it has kk−1
k−1

vertices and edges.
Another commonly used hypergraph is H(k, �) =

(V(k, �), E(k, �)) for integers k, � ≥ 1 [17, 14]. We do not
need its exact definition here, but mention some basic
properties relevant to us. The edge set E(k, �) is a dis-
joint union of ‘red’ edges and ‘blue’ edges where each red
edge has k elements and each blue edge has � elements.
The hypergraph has the property that in any 2 coloring
of V(k, �) with colors ‘red’ and ‘blue’ either, (1) all ver-
tices in some red edge are colored red, or (2) all vertices
in some blue edge are colored blue. The hypergraph
H(k, �) has |V(k, �)| =

�
k+�
k

�
− 1 while |E(k, �)| =

�
k+�
k

�
.

If � = k, the number of edges is
�
2k
k

�
≤ 4k. We say that

we can realize a family of hypergraphs Hn = (Vn, En) as
the primal (resp. dual) hypergraph of a family of sets S,
if for each integer t ≥ 1 and each hypergraph H = (V, E)
in the family with |V| = t there is a set of points P in
the plane such that the primal (resp. dual) hypergraph
induced by P and S is isomorphic to H.

2.1 Elementary properties of λ(H)

The following are elementary and we omit their proof.

Lemma 1 For a hypergraph H = (V , E) we have that
λ(H) ≤ 2 log(2|E|+ 1).

Lemma 2 For a hypergraph H = (V, E), λ(H) ≤
disc(H) + 1, where disc(H) is the combinatorial discrep-
ancy.
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3 Computational Hardness Result

It is NP-hard to decide if a given k-uniform hypergraph
is 2-colorable for k ≥ 3 [9]. As such given a hypergraph
H = (V , E) deciding if λ(H) = 2 is NP-complete and
thus it is NP-hard to compute λ(H) exactly. We show
here that it is NP-hard to approximate it within a factor
logm where m = |E|.

Theorem 3 There is a constant c > 0 such that the
following problem is NP-hard: Given a hypergraph J =
(U ,F) with |F| = m output a number α with λ(J) ≤
α ≤ c logm · λ(J).

Proof. Consider an instance of determining whether a
given 4-uniform hypergraph H = (V , E) is 2-colorable.
Let E = {e1, e2, . . . , es} and |ei| = 4 for 1 ≤ i ≤
s. Let k = 2 �log s� (an even number). The hy-
pergraph H� = H(k, k) = (V �, E �), where V � is dis-
joint from V, has at most 4k ≤ s5 edges for s large
enough. Let H�� = (V ��, E ��) be defined on distinct el-
ements but isomorphic to H�. Now consider the fol-
lowing three hypergraphs: (1) H1 = (V ∪ V �, E1) where
E1 = {e1 ∪ e2 | e1 ∈ E , e2 ∈ E �},

(2) H2 = (V ∪ V ��, E2) where E2 =
{e1 ∪ e2 | e1 ∈ E , e2 ∈ E ��}, and, (3) H3 = (V � ∪ V ��, E),
where E is defined as follows: For each e� ∈ E �,
choose arbitrarily k/2 elements of e� and call this
set e�. Similarly, define e�� for each e�� ∈ E ��. Now,
E = {e� ∪ e�� | e� ∈ E �, e�� ∈ E ��}.

Lemma 4 The hypergraph J = (V∪V �∪V ��, E1∪E2∪E)
is 2-colorable iff (V , E) is 2-colorable.

Proof. If (V , E) is 2-colorable, then choose the same
coloring for elements of V, color all elements of V � blue
and all elements of V �� red. It is easy to see that all the
edges of E1 ∪ E2 ∪ E are properly colored.

On the other hand, suppose that J can be 2-colored.
Since V,V �,V �� are mutually disjoint one can look upon
the coloring as a coloring on the three of those sets sep-
arately. We claim that the coloring colors (V , E) prop-
erly. Suppose, this is not true. Then there is an edge
e ∈ E that is mono-chromatic, say all its elements are
blue. Since we know that H� cannot be 2-colored there
is some e� ∈ E � which is mono-chromatic. The color of
e� cannot be blue otherwise the edge e ∪ e� ∈ E1 would
be all blue. So it must be red. Similarly there is a
e�� ∈ E �� that is all red. However then, e� ∪ e�� ∈ E is
all red and this contradicts the fact that the coloring
is proper for J which includes this edge. It must there-
fore be true that E has been properly 2-colored by the
induced coloring. �

For the hypergraph J, the total number of edges m is
clearly polynomial in s each of cardinality at most k +
4 = Θ(log s). Thus the total size of the new hypergraph

is polynomial in s. Also, logm = O(log s), where m
is the number of edges of J. In particular, there is a
constant c such that 2c logm < k.

Now, by Lemma 4, if λ(H) = 2 then λ(J) = 2 oth-
erwise λ(J) ≥ k, since all edge sizes are at least k in
J. Suppose we have an approximation algorithm that
approximates λ(J) to within c logm, i.e., it outputs an
α with λ(J) ≤ α ≤ c logm · λ(J). Then, we can decide
if H is 2-colorable as follows: If α ≤ 2c logm, then out-
put that H is 2 colorable, otherwise it is not. One can
verify easily that the algorithm will correctly decide 2
colorability of H. The reduction is complete. �

In light of the above and Lemma 1, the algorithm which
simply outputs O(log |E|) as an approximation for λ(H),
is asymptotically an optimal approximation algorithm,
assuming P�=NP.

4 Lower bound for some Geometric Hypergraphs.

Suppose that we can geometrically realize the graph
H(Tk), for all large enough k, for some family of sets
S as its primal (resp. dual) hypergraph. Then, for the
family of hypergraphs induced by S, it follows that
λ(H) = Ω( log n

log log n ) (resp. λ(H∗) = Ω(log n/ log log n)),
since for all large enough k, there is some hypergraph

induced by S on an n = kk−1
k−1 point set P (resp. with a

sub-family of size n) such that for any two coloring of
P (resp. sets in the sub-family) some edges with size at
least k = Ω( log n

log log n ) are mono-chromatic. Similarly, if

for all k, � sufficiently large, we can realize H(k, �) then it
will follow (letting � = k and reasoning as before) that
λ(H) = Ω(logn) (or λ(H∗) = Ω(log n)). Results from
the literature on indecomposability of coverings imply
the following. In each case a realization of all H(Tk)
or all H(k, �) has been shown. The following theorem
summarizes such known constructions exhibiting lower
bounds on λ(H) (resp. λ(H∗)) as a function of n where
H (resp. H∗) is a geometric primal (resp. dual) hyper-
graph induced by a set of points P with |P | = n (resp.
induced by a sub-family of size n):

Theorem 5 For the family of, (i) Translates of (open
or closed) concave polygons with no parallel sides:
λ(H),λ(H∗) = Ω(log n) [17]. (ii) Open unit disks:
λ(H),λ(H∗) = Ω(log n) [14]. (iii) Homothets of any
convex polygon with at least 4 sides, or a concave one
with no parallel sides: λ(H∗) = Ω(log n) [8]. (iv) Open
strips: λ(H),λ(H∗) = Ω(log n/ log log n) [16].

The result in part (ii) of the above theorem, extends to
a larger family, all (open or closed) disks as well.

We conjecture that for hypergraphs defined by the
family of all axis-parallel rectangles we have λ(H) =
Ω(log n). Interestingly, by Lemma 2 this would also
imply a Ω(log n) lower bound for the combinatorial dis-
crepancy of axis-parallel rectangles, which is Tusnády’s
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problem in the plane, see [11]. This bound is already
known from [2].

5 Non realizability of H(Tk) by axis-parallel rectan-
gles

Pach et al. [16] mention (see page 6) that it was not
known if the graph H(Tk) could be realized as the pri-
mal hypergraph of the family of axis-parallel rectan-
gles. They were interested in the question if λ(H) =
O(1) where H is from the family of primal hypergraphs
of axis-parallel rectangles. It was shown in [3] that
λ(H) �= O(1). Here, we answer the question left un-
decided in [16]. We show that H(Tk) cannot be realized
by axis-parallel rectangles in the plane, for sufficiently
large k. We conjecture that H(k, �) is also not realizable
(for large enough k, �), and a proof similar to one we
give below will probably suffice to show this.

In what follows, whenever we say rectangle we mean
an axis-parallel rectangle. Let H = (V , E) be a hyper-
graph and V � ⊆ V, E � ⊆ E . A sub-hypergraph H� of H
defined by V �, E � is the hypergraph (V �, {e∩V �|e ∈ E �}).
We show that for all sufficiently large k, H(Tk) cannot be
realized as the hypergraph of points induced by rectan-
gles. The following is a simple observation, that follows
by deleting rectangles and points given a realization of
H.

Observation 6 Let H = (V , E) be a hypergraph that
can be realized by points wrt rectangles, and let H� be
a sub-hypergraph of H. Then H� can also be realized by
points wrt rectangles.

Another easy observation is the following.

Observation 7 H(Tk) is a sub-hypergraph of H(Tm)
for all m ≥ k.

a

b5

c55

d535

e5325

f53222

Figure 1: Some vertices and edges of T0. The height is 5
and each internal node except those with depth 4 have
5 children each. Each node at depth 4 has two leaves as
children. The naming of a few vertices is shown.

We omit the easy proof of the following lemma.

Lemma 8 Let T be an arbitrary rooted tree. Then
H(T ) is a sub-hypergraph of H(Tk) for some k. More-
over, by Observation 7 above, it is a sub-hypergraph for
H(Tk) for all large enough k.

p

p2

p1

p3

p21

p23

p22

p221

p223

p222
p2223

Figure 2: Some of the points shown are forced to be
placed as above. The blue rectangles shown are con-
tained in R,R2, R22, R222.

Now, in order to prove that H(Tk) cannot be realized
by points wrt rectangles, we consider the tree T0 shown
in Figure 1 and we show that there is no way to realize
H(T0) using rectangles.

For two points p, q in the same quadrant, we say p
dominates q if any rectangle containing p and the origin,
must contain q. For a set of points in the same quadrant,
if none dominates any other, we say they are on the
skyline.

Theorem 9 For the tree T0, H(T0) cannot be realized
by points wrt rectangles.

Proof. The root is named a. The vertices at depth 1
are named as b1, . . . , b5, those at depth 2 are named cij ,
where cij for fixed i are the children of bi. Continuing,
those at depth 3 are dijk, at depth 4 are eijkl. The nodes
at depth 6 are fijklm. Here the indexes i, j, k, l vary from
1 to 5 while m varies in 1, 2. The proof is by contra-
diction. Assume that there is a realization of H(T0) by
points wrt rectangles. Let the point corresponding to
the root be p and let pi be the points corresponding to
bi, pij for cij and so on. In the rest of the proof we
talk of the points as if they are the vertices of the tree
itself with the parent-child or sibling relationships, for
brevity. For example, we will say p23 is a child of p2 etc.

Let p be the origin. We may assume that the x and
y coordinates of all the points are distinct and the rect-
angles that define the edges of H(T0) contain the rel-
evant points in their interior (as this can be ensured
by infinitesimal shifts). The proof will proceed by forc-
ing some points of depth 1 into the 1st quadrant (this
is without loss of generality – the crucial point is that
they are in the same quadrant), then some at depth 2
are forced into the 2nd quadrant etc. Ultimately, we
run out of quadrants for the points at depth 5.

We let R denote the rectangle containing the hyper-
edge {p1, p2, p3, p4, p5} and in general the children of
point, say p23, which define a hyperedge in ES(T0) is re-
alized by rectangle R23. Now, for a hyperedge in EL(T0)
defined by say the root-to-leaf path to p12445, let rect-
angle R12445 realize it.
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The following lemma follows directly from definitions
and the pigeon-hole principle.

Lemma 10 Let X be a set of points in the plane, |X| ≥
5. Suppose that there is a rectangle RX containing all
points in X but not the origin, and for each point x ∈ X,
there is a rectangle Rx containing x and the origin, but
no other point of X. Then, there are at least 3 points
in X that lie in 1 quadrant and are on the skyline.

Applying Lemma 10 with X as the children of p, i.e.,
X = {p1, . . . , p5}, and RX = R while the rectangles
Rx can be taken as any rectangle realizing one of the
root-to-leaf hyperedges through one of the pi we con-
clude that some three points among p1, . . . , p5 lie in one
quadrant, which is without loss of generality the first
quadrant. Assume these are p1, p2, p3 and that p2 is
the ‘middle’ point, see Figure 2. Fix indices j, k, l,m.
We claim that none of the points p2j , p2jk, p2jkl, p2jklm
belong to the 1st quadrant. The following elementary
lemma is required.

Lemma 11 Let points x1, x2, x3 be in the same quad-
rant on the skyline with x2 in the middle. Let y be an-
other point such that there exist the following rectangles:
(i) RX containing x1, x2, x3 but not y (ii) R1 contain-
ing the origin and x1 but not y, (iii) R3 containing the
origin and x3 but not y, and, (iv) Ry that contains the
origin, x2 and y but not x1, x3. Then, y cannot lie in
the same quadrant as x1, x2, x3.

Now, we come to the claim above. To see that p2j can-
not belong to the 1st quadrant, we apply Lemma 11
by letting x1, x2, x3 be p1, p2, p3 respectively, y be p2j ,
and letting RX = R,R1 = R11111, R3 = R31111, Ry =
R2jklm. (These rectangle choices are not unique;
other choices lead to the same conclusion.) Similarly,
p2jk, p2jkl, p2jklm belong to different quadrants. By
what we showed above, p21, . . . , p25 do not lie in the 1st
quadrant. The proof is now essentially successive repe-
tition of the above arguments for the different levels of
the tree. For example, applying Lemma 10, we conclude
some three of p21, . . . , p25 lie in 1 quadrant - wlog as-
sume this is quadrant 2 and the points are p21, p22, p23,
all on the skyline, with p22 the middle point. By apply-
ing Lemma 11 above we can conclude (wlog) that the
points p221, p222, p223 must lie in 1 quadrant on the sky-
line (wlog 3rd quadrant), with p222 the middle point.
Similarly, applying the combination of Lemma 10 and
Lemma 11 to the descendants of p222 we conclude as
before that all its descendants must lie in quadrant 4.
Moreover, all the p222l, for 1 ≤ l ≤ 5 must all lie on
the skyline and consider a ‘middle’ point of these - say
this is p2223. We have now run out of quadrants for the
children at the next level of p2223. More precisely, there
is no way to place p22231 owing to Lemma 11. This is a
contradiction. �
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Böröczky, G. F. Tóth, J. Pach eds.), Bolyai Soc.
Math. Studies, 24, 2014.

230



29th Canadian Conference on Computational Geometry, 2017

[16] J. Pach, G. Tardos, and G. Tóth. Indecomposable
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