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2D Closest Pair Problem: A Closer Look
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Abstract

A closer look is taken at the well-known divide-and-
conquer algorithm for finding the closest pair of a set of
points in the plane under the Euclidean distance. An
argument is made that it is sufficient, and sometimes
necessary, to check only the next three points following
the current point associated with the y-sorted array in
the combine phase of the algorithm.

1 Introduction

The closest pair of points problem is a fundamental
problem in computational geometry and has received
significant attention over the years. The input for the
problem consists of a set P = {p1, p2, . . . , pn} of n points
in Rd, where d is typically treated as a constant, and
the objective is to find two points p and q in P such
that d(p, q) = min{d(pi, pj)|pi, pj ∈ P, pi �= pj}, where
d(p, q) represents the Euclidean distance between points
p and q. It is well known that the problem can be solved
optimally in O(n log n) time for any constant dimension
d using a divide and conquer approach.

In this paper, the two-dimensional (2D) case of the
problem is considered, and a tight geometric bound is
derived on a specific step of the combine phase. The
description of the algorithm is given in [1, 2, 3], and it
can be summarized as follows: (1) Divide P into two
equal parts, PL and PR, by a vertical line l : x = xm,
where xm is the median x-coordinate of the points in
P ; (2) Recursively find the closest pair of points in PL

and PR, respectively; (3) Let δ be the minimum of the
two distances returned in the previous step; that is, no
two points in PL or PR can be closer than δ. Then, the
distance for the closest pair in P is either δ or given
by a pair of points (p, q) where p ∈ PL and q ∈ PR.
In order to find the distance in the later case, denoted
as δL,R, let Yδ represent the points p in P , with xp ∈
[xm − δ, xm + δ], sorted in non-decreasing order by y-
coordinate. Then, δL,R can be found by traversing Yδ in
the sorted order and, for each point pi ∈ Yδ, computing
the distances from pi to the next five points following
pi in Yδ (see Exercise 33.4 in [2]). It has been posed to
the authors of the current paper, as an open problem,
to prove or disprove whether it suffices to check only the
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next four points following pi in Yδ. The main result is
the following theorem.

Theorem 1 It is sufficient, and sometimes necessary,
to check only the next three points following pi in Yδ.

Note that a similar and easier analysis follows if any
point p ∈ Yδ is required to satisfy xp ∈ (xm − δ, xm +
δ), since we are looking for a pair of points that gives
δL,R < δ. Nevertheless, for the sake of argument, the
subsequent analysis has been performed in line with the
original algorithm proposed in [1, 2, 3], which considers
all points p in Yδ with xp ∈ [xm − δ, xm + δ].

2 A Closer Look

In the current section, we prove Theorem 1. We start
by taking care of inputs that have overlapping points,
defined as points with the same x- and y-coordinates.
Overlapping points imply that the closest pair has a
zero distance.

Consider a 2δ× δ axis-aligned box B centered at xm,
and assume that B is placed with its bottom edge on
the x-axis and xm = 0. As shown in [2], at most four
points in B belong to PL, and at most four to PR.

Lemma 2 Let pi and pj be two overlapping points in
Yδ, with i < j. Then, for each point in Yδ, it is neces-
sary and sufficient to check the next three points in Yδ

to detect the overlapping pair of points.

Proof. Let pi be the current point in Yδ, and assume
that pi ∈ PL. There can be at most three other points
in B with the same y-coordinate as pi. That happens
when the x-coordinate of pi is xm, there is a point in PL

at (xm − δ, 0), and two points in PR at (xm + δ, 0) and
(xm, 0), respectively. Thus, it suffices to check the next
three points following pi in Yδ to find the overlapping
points. On the other hand, if pi+1, pi+2, and pi+3 are in
the aforementioned order, then pi+3 has to be checked
in order to identify the overlapping points. �

Notice that if B is defined as an open box, where any
point p ∈ Yδ satisfies xp ∈ (xm − δ, xm + δ), then the
overlapping points can be found by checking only the
next point following pi in Yδ.

From now on, assume that the input set P contains no
overlapping points. Let BL and BR denote the left and
right sides of B, respectively, as partitioned by vertical
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Figure 1: Illustration for Subcase A of Case I. (a)-(d) The positions of points p2, p3, and p4 in BR change as point
p2 varies from (0, 0) to (δ, 0). The circular arc (of radius δ) centered at p indicates that only two points in BR are
located ≤ δ from p.

line y = xm. BL and BR are δ × δ squares. Let p = pi
be the current point in Yδ, and assume that p ∈ PL.

Given that the maximum number of points of sepa-
ration of at least δ in BL (or BR) is four, at most three
points in Yδ with an array index greater than i lie within
BL. In other words, at most three points coming after p
in Yδ, not necessarily in a consecutive order, are in BL.

This observation results in four different cases that
must be considered separately - (I) three points after p
are in BL, (II) two points after p are in BL, (III) one
point after p is in BL, and (IV) no point after p is in BL

(this case is trivial and omitted herein). In each of these
cases, the worst-case scenario is determined, and that is
the minimum number of points following p in Yδ that
must be examined in order to identify the closest pair
of points correctly. For simplicity of notation, Y is used
instead of Yδ, and p1, p2, . . . in place of pi+1, pi+2, . . .
hereafter.

As shall be seen shortly, by looking at the four cases,

p5 cannot be a candidate for the closest pair with p. It is
then required to prove that either (i) one of {p1, p2, p3}
is closer to p than p4, or (ii) if p4 is closer to p than any
one of {p1, p2, p3}, then one of {p1, p2, p3} is closer to p4
than p, and so (p, p4) cannot be the closest pair.

Case I: Three points after p are in BL

Suppose that p is at the bottom right corner of BL (the
case where p is at the bottom left corner is trivial). We
have the following subcases.
Subcase A: Three points after p are in BR. Con-
sider Figure 1, where p2, p3, and p4 define an equilat-
eral triangle of side length δ (i.e., worst case, in which
the points are at their closest distance from each other
in BR). The first point in BR can have the same y-
coordinate as p (i.e., worst case, given that choosing a
larger y-coordinate for the first point in BR would sim-
ply increase the distances between the points in BR and
p), and it can be either the first or second point following
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Figure 2: Illustration for Subcase B of Case II when p = (0, 0). (a)-(d) The locations of points p2, p3,and p5 in BR

change as point p2 varies from (0, 0) to (δ, 0). Based on the circular arc (of radius δ) centered at p, only two points
in BR are located ≤ δ from p.

p in Y (i.e., labeled as p1 or p2). Since it is irrelevant to
the subsequent argument, assume that it is p2. When p2
varies from (0, 0) to (δ/2, 0), d(p, p3) is always greater
than or equal to δ, and d(p, p4) is always greater than
d(p, p2) (Figure 1 (a), (b)). As p2 varies from (δ/2, 0)
to (δ, 0), d(p, p4) is always greater than or equal to δ,
but d(p, p3) can become smaller than d(p, p2) (Figure 1
(c), (d)). Thus, in Subcase A, p has to be compared
with the three following points in Y .
Subcase B: Two points after p are in BR. In this case,
p2 and p3 can be located within the interior of BR to
be deemed competitive, and thus p must be compared
with the next three following points in Y .

Overall, in Case I, only three points following p in Y
need to be taken into consideration.

Case II: Two points after p are in BL

In this case, p can be located anywhere along the bottom
edge of BL.

Subcase A: Four points after p are in BR. This case is
trivial; the point at the leftmost bottom corner of BR

is the closest point to p.

Subcase B: Three points after p are in BR. Refer to
Figure 2, where the triangles defined by (p, p1, p4) and
(p2, p3, p5), respectively, are equilateral with side length
δ.

First, assume that p is at the lower right corner of
BL. The worst case occurs when the first point in BR,
either p1 or p2 (say p2), has the same y-coordinate as
p. When p2 varies from (0, 0) to (δ/2, 0), d(p, p3) is
always greater than or equal to δ, and d(p, p5) is always
greater than d(p, p2) (Figure 2 (a), (b)). As p2 varies
from (δ/2, 0) to (δ, 0), d(p, p5) is always greater than or
equal to δ, but d(p, p3) can become smaller than d(p, p2)
(Figure 2 (c), (d)). Thus, p has to be compared with
the next three following points in Y .

When p is located somewhere on the bottom edge of
BL other than the bottom right corner of BL, points
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Figure 3: Illustration for Subcase B of Case II when p �= (0, 0). (a) When the first two points in BR are located on
the bottom edge, d(p, p2) can be ≤ δ. (b)-(d) When p1 is between (0, 0) and (δ/2, 0), d(p, p4) ≥ (p, p1). When p1
is between (δ/2, 0) and (δ, 0), d(p3, p) can be ≤ d(p1, p). (e)-(f) p4 is at its closest to p. When p is between (0, 0)
and (−δ/2, 0), d(p, p4) ≥ d(p, p1). When p is between (−δ/2, 0) and (−δ, 0), d(p, p4) ≥ δ. Thus, Only three points
following p in Y need to be considered in the worst case.
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Figure 4: Illustration for Subcase C of Case II when p = (0, 0). (a) p3 is located exactly δ from p and p1, respectively.
(b) p3 is placed slightly higher than and to the left of that in (a). In both scenarios, p4 does not need to be taken
into consideration, given that d(p3, p4) ≤ d(p, p4).

Figure 5: Illustration for Subcase C of Case II when p �= (0, 0). The shaded region indicates the possible location of
the second point in BR.

p1 and p2 can be placed at the corners on the bottom
edge of BR, and p4 is always farther than δ from p
(Figure 3 (a)). When p1 varies from (0, 0) to (δ/2,
0), as illustrated in Figure 3 (b) and (c), d(p, p4) is al-
ways greater than d(p, p1). As p1 changes from (δ/2, 0)
to (δ, 0), d(p, p4) is always greater than or equal to δ,
but d(p, p3) can become smaller than d(p, p1) (Figure 3
(d)). The worst case happens when p4 is located such
that it has the smallest x- and y-coordinates possible
(i.e., p4 is at its closest to p), as shown in Figure 3 (e).
In such case, when p is between (0, 0) and (−δ/2, 0),
d(p, p4) ≥ d(p, p1). When p is between (−δ/2, 0) and
(−δ, 0), d(p, p4) is always greater than or equal to δ
(Figure 3 (f)).

Altogether, in Subcase B, only three following points
after p in Y need to be examined.

Subcase C: Two points after p are in BR. As shown
in Figure 4, with the assumption that p is located at

the bottom right corner of BL, the shaded region corre-
sponds to possible locations of p4 such that d(p, p4) ≤ δ.
The chosen location of p2 is of the smallest y-coordinate,
so that the area of the shaded region is maximized (i.e.,
worst case). A different location of p2 would only di-
minish the shaded region. In addition, p3 is placed such
that d(p, p3) ≥ δ and d(p1, p3) ≥ δ.

Lemma 3 There exists a configuration of points in Y
such that p4 is closer to p than any of {p1, p2, p3}.

Proof. Refer to Figure 4. �

Lemma 4 If p4 is closer to p than any of {p1, p2, p3}
then d(p3, p4) ≤ d(p, p4).

Proof. At first, consider the scenario when p, p1, and
p3 form an equilateral triangle of side δ, as shown in
Figure 4 (a). Let p4 be any point in the shaded region,
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Figure 6: Illustration for Case III. (a) When p1 is between (0, 0) and (δ/2, 0), d(p, p1) ≤ d(p, p4). (b) When p1 is
between (δ/2, 0) and (δ, 0), d(p, p3) can be < δ.

let a be the intersection point of the two circular arcs (of
radius δ) in BR, and let o be the intersection between
line segment p3a and l. Obviously, d(p3, a) = δ, and,
for any point b on the open line segment oa, d(p3, b) ≤
d(p, b). Let b be the intersection point between pp4 and
p3a. Then, d(p, p4) = d(p, b) + d(b, p4) ≥ d(p3, b) +
d(b, p4) ≥ d(p3, p4). As a result, (p, p4) does not need
to be considered when the current point in Y is p.

Assume now that p3 is moved upwards and to the
left, while having d(p1, p3) ≥ δ (Figure 4 (b)). Consider
a horizontal line passing through p3. Point o is the
intersection of the horizontal line with l, point b is where
d(p1, b) = δ, and point a is where d(p, a) = δ. Let c be
a point on line segment oa. Notice that ∠p3po ≤ π/4.
Thus, d(p3, o) ≤ d(p, o). Given that d(p, p3) ≥ δ and
ab is parallel with pp1, d(a, b) = d(p, p1) = δ (since
d(p1, b) = d(p, a) = δ). So, d(p3, a) ≤ δ. As a result,
for any point c on the open line segment oa, d(p3, c) ≤
d(p, c). This implies that, for any point p4 in the shaded
region, d(p3, p4) ≤ d(p, p4). Consequently, (p, p4) does
not need to be checked. �

When p is placed to the left of the lower right corner
of BL, as illustrated in Figure 5, the second point in
BR can be located in the shaded region with a distance
≤ δ (i.e., p2, p3, or p4). Consider the case that the
second point in BR is p4, and a is then p3. We claim
that d(p3, p4) ≤ d(p, p4), which can be proven using a
similar argument as that in Lemma 4.

Hence, in Subcase C, the current point p has to be
compared to only the next three points in Y .

Case III: One point after p is in BL

If p is situated at the lower right corner of BL, the
argument is essentially the same as that in Case I, but

without the two points at the top edge of BL. Thus,
only three points following p in Y have to be examined.

Consider that p is located away from the bottom right
corner of BL. If there are four points in BR, only two
following points after p need to be checked, given that
the first two points in BR are located on the bottom
edge of BR (i.e., one at each lower corner). Suppose
that there are three points in BR. As shown in Figure 6
(a), when p1 is located between (0, 0) and (δ/2, 0),
d(p, p1) ≤ d(p, p4). When p1 is between (δ/2, 0) and
(δ, 0), p3 can be less than δ from p. Hence, only the
three following points after p in Y must be checked in
the worst case.

This concludes the proof of Theorem 1.
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