
CCCG 2017, Ottawa, Ontario, July 26–28, 2017

Balanced k-Center Clustering When k Is A Constant

Hu Ding∗

Abstract

The problem of constrained k-center clustering has at-
tracted significant attention in the past decades. In this
paper, we study balanced k-center cluster where the size
of each cluster is constrained by the given lower and
upper bounds. The problem is motivated by the appli-
cations in processing and analyzing large-scale data in
high dimension. We provide a simple nearly linear time
4-approximation algorithm when the number of clusters
k is assumed to be a constant. Comparing with existing
method, our algorithm improves the approximation ra-
tio and significantly reduces the time complexity. More-
over, our result can be easily extended to any metric
space.

1 Introduction

The k-center clustering is a fundamental problem in
computer science and has numerous applications in real
world. Given a set of points in Euclidean space and a
positive integer k, the problem seeks k balls to cover
all the points such that the maximum radius of the
balls is minimized. Another variant of k-center clus-
tering considers the case that all the given points (ver-
tices) form a metric graph and the centers of the balls
are chosen from the vertices. The optimal approxima-
tion results appeared in the 80’s: Gonazlez [11] and
Hochbaum and Shmoys [12] provided a 2-approximation
and proved that any approximation ratio c < 2 would
imply P = NP . Besides the classic problem, several
variants of k-center clustering with upper [3,5,7,14,15]
or lower [1, 2, 10] bounds on cluster sizes have been ex-
tensively studied in recent years. In particular, Ding et
al. [9] studied k-center clustering with both upper and
lower bounded cluster sizes which is also called Balanced
k-Center Clustering. Most of existing methods model
these constrained k-center clustering problems as linear
integer programming and design novel rounding algo-
rithms to obtain constant approximations.

Besides the well studied applications in data analy-
sis and facility location, balanced k-center clustering is
particularly motivated by the arising problems in big
data [4, 6, 8]. For example, we need to dispatch data
to multiple machines for processing if the data scale

∗Department of Computer Science and Engineering, Michigan
State University, huding@msu.edu

is extremely large; at the same time we have to con-
sider the balancedness, because the machines receiving
too much data could be the bottleneck of the system
and the ones receiving too little data is not sufficiently
energy-efficient.

In this paper, we consider the balanced k-center clus-
tering problem in high dimension and assume that k is
a constant. The rationale for the assumption is twofold:
k is usually not large in practice (e.g., the data is dis-
tributed over less than 10 machines); even if k is large,
we can first partition the data into multiple groups
and perform balanced k-center clustering for each group
with a much smaller k (similar to the manner of hierar-
chical clustering [13]).
Our main result. Given an instance of k-center clus-
tering with upper and lower bounds on cluster sizes,
we develop a nearly linear time 4-approximation algo-
rithm. We assume that the dimensionality d is large
and the number of clusters k is a constant. The key
techniques contains two parts. First, we observe that
Gonazlez’s algorithm [11] could provide a set of candi-
dates for the k cluster centers and at least one candi-
date yields 4-approximation (Lemma 1). Secondly, we
develop a novel rounding procedure to select the qual-
ified candidate and generate a feasible solution for the
balanced k-center clustering (Lemma 2); note that a
straightforward idea for the selection task is modeling
it as a maximum flow problem but the running time
would be at least quadratic. Comparing with the ex-
isting method for balanced k-center clustering [9], we
improve the approximation ratio from 6 to 4 and sig-
nificantly reduce the running time via avoiding to solve
the large-scale linear programming.

Also, our result can be easily extended to any metric
space and the running time depends on the complexity
for acquiring the distance between any two points (e.g.,
the complexity is O(d) in Euclidean space).
Notation. Throughout the paper we denote the input
as a set of n points P in Rd and an integer k ≥ 1; we
further constrain the size of each cluster by the lower
and upper bounds L and U ∈ Z+ (to ensure that a fea-
sible solution exists, we assume 1 ≤ L ≤ �n

k � ≤ �n
k � ≤

U ≤ n).
For k-center clustering in Rd, the k cluster cen-

ters could be any points in the space (though our 4-
approximation solution comes from the input points);
for the problem in abstract metric space, the cluster
centers are restricted inside the input points.

179

29th Canadian Conference on Computational Geometry, 2017

2 Our Algorithm

2.1 Finding The Candidates For Cluster Centers

Gonazlez’s seminal paper [11] provided a very simple 2-
approximation algorithm for k-center clustering in any
dimension. Basically, the algorithm iteratively selects
k points from the input, where the initial point is arbi-
trarily selected, and each following j-th step (2 ≤ j ≤ k)
chooses the point which has the largest minimum dis-
tance to the already selected j − 1 points. Finally,
it is able to show that these k points induce a 2-
approximation for k-center clustering if each input point
is assigned to its nearest neighbor of these k points.

We denote these ordered k points selected by Go-
nazlez’s algorithm as S = {s1, s2, · · · , sk}, and de-
fine the Cartesian product S × · · · × S� �� �

k

as Sk, i.e.,

{(s�1, s�2, · · · , s�k) | s�j ∈ S, 1 ≤ j ≤ k}. Then we have
the following lemma.

Lemma 1 There exists a k-tuple points from Sk yield-
ing a 4-approximation for balanced k-center clustering.

Proof. Suppose the unknown k optimal balanced clus-
ters are C1, C2, · · · , Ck, and the optimal radius is ropt. If
the selected k points of S luckily fall to these k clusters
separately, it is easy to obtain a 2-approximation via
triangle inequality (we will discuss that how to assign
the input points to the k cluster centers for satisfying
the requirement of balance in Section 2.2).

Now, we consider the other case. Without loss of gen-
erality, we assume that sj1 and sj2 is the firstly appeared
pair belonging to a same optimal cluster and j1 < j2.
For the sake of simplicity, we assume that sj ∈ Cj for
1 ≤ j ≤ j2 − 1. Due to the nature of Gonazlez’s algo-
rithm, we know that

max
p∈∪k

j=j2
Cj

{ min
1≤l≤j2−1

||p− sl||} ≤ ||sj1 − sj2 || ≤ 2ropt. (1)

Note even for the points from a same cluster Cj where
j ≥ j2, their nearest neighbors from {s1, · · · , sj2−1} are
not necessarily same. Moreover, because of the require-
ment of balance, we cannot simply assign them to their
nearest neighbors to generate a 2-approximation by (1);
actually, this is also the major difference between ordi-
nary and balanced k-center clustering. Instead, for each
j ≥ j2 we arbitrarily select a point p ∈ Cj , and assign
the whole Cj to p’s nearest neighbor of {s1, · · · , sj2−1}
which is denoted as sl(j). Correspondingly, for any
p� ∈ Cj we have

||p� − sl(j)|| ≤ ||p� − p||+ ||p− sl(j)|| ≤ 4ropt (2)

due to triangle inequality and the fact that both ||p�−p||
and ||p − sl(j)|| are no larger than 2ropt. Thus, the k-
tuple points {s1, s2, · · · , sj2−1, sl(j2), · · · , sl(k)} yields
a 4-approximation if each optimal cluster Cj is assigned
to the j-th point in the tuple for 1 ≤ j ≤ k. �

2.2 Finding A Feasible Solution

Next, we answer the question that how to assign the
input points to a fixed k-tuple points to satisfy the
requirement of balance. To show its generalization,
we denote the given k-tuple as {q1, q2, · · · , qk} which
is not necessarily from Sk. It is easy to know that
the qualified radii must come from the kn distances
{||p−qj || | p ∈ P, 1 ≤ j ≤ k}. As a consequence, we can
apply binary search to find the smallest qualified radius.
For each candidate radius r, we draw k balls centered
at the k-tuple points and with the radius r respectively.
We denote the k balls as B1, · · · ,Bk. Thus, the only
remaining problem is determining that whether there
exists a balanced clustering on P to be covered by such
k balls. We call such a clustering as a feasible solution
if it exists.

A straightforward way to find a feasible solution is
building a bipartite graph between the n points of P
and the k balls, where a point is connected to a ball
if it is covered by the ball; each ball has a capacity U
and demand L, and the maximum flow from the points
to balls is n if and only if a feasible solution exists.
The existing maximum flow algorithms, such as Ford-
Fulkerson algorithm or the new Orlin’s algorithm [16],
costs at least O(nm) time. Recall that k is constant,
and below we will show that the problem can be solved
by a system of linear equations and inequalities
(SoL) with the size independent of n.

The region ∪k
j=1Bj divides the space into 2k−1 parts

(we ignore the region outside the union of the balls,
since no point locates there; otherwise, we can simply
reject this candidate r). We use R(j1,j2,··· ,jt) with 1 ≤
j1 < j2 < · · · < jt ≤ k to indicate the region

(Bj1 ∩ · · · ∩ Bjt) \ (∪j /∈{j1,··· ,jt}Bj).

We calculate the total number of points covered by
R(j1,j2,··· ,jt) which is denoted as n(j1,j2,··· ,jt), and assign

t non-negative variables xj1
(j1,j2,··· ,jt), · · · , x

jt
(j1,j2,··· ,jt)

where each xjl
(j1,j2,··· ,jt) indicates the number of points

assigned to the jl-th cluster from R(j1,j2,··· ,jt). Thus,
we have the following two types of linear constraint.

xj1
(j1,j2,··· ,jt) + · · ·+ xjt

(j1,j2,··· ,jt) = n(j1,j2,··· ,jt), (3)

L ≤
�

(j1,j2,··· ,jt)∈πjl

xjl
(j1,j2,··· ,jt) ≤ U. (4)

Here πjl is the set of all the possible subsets containing
jl of {1, · · · , k}. There are at most k2k variables and
O(2k) linear constraints in the whole SoL. Since k is a
constant, the time complexity for building such a SoL is
O(nd) which is dominated by computing the distances
between the n points and k ball centers. Further, the
time complexity for solving the SoL is O(poly(2k)) via
Gaussian elimination.

180

CCCG 2017, Ottawa, Ontario, July 26–28, 2017

Once obtaining a feasible solution of the above SoL,
we still need to check that whether the solution is an
integer solution for generating a clustering result.

Lemma 2 If there exists a feasible solution of the above
SoL, we can always transform it to an integer solution
in O(poly(2k)) time.

Figure 1: An illustration for building the multigraph
G. Suppose k = 3 and the three balls locate as the left
figure shows. For the sake of simplicity, we assume that
all the variables corresponding to the overlapping areas
are fractional. The colored multigraph G is in the right.
The green edges correspond to the intersection of the
three balls; any two vertices have another individually
colored edge corresponding to their own intersection.

Proof. Suppose we have a fractional feasible solution
denoted as Γ = {xjl

(j1,j2,··· ,jt) | jl ∈ (j1, j2, · · · , jt),
(j1, j2, · · · , jt) ∈ π} where π = 2{1,··· ,k}. To help
our analysis, we also construct a colored multigraph
G(V,E), where V contains k vertices {vj | 1 ≤ j ≤ k}
corresponding to the k balls {Bj | 1 ≤ j ≤ k} re-
spectively. Moreover, for any region R(j1,j2,··· ,jt) and
any pair jl, jl� with 1 ≤ l < l� ≤ t, we add an edge
between vjl and vjl� if both xjl

(j1,j2,··· ,jt) and x
jl�
(j1,j2,··· ,jt)

are fractional values. Thus, it is possible to have
multiple edges between two vertices. Also, the edges
corresponding to each R(j1,j2,··· ,jt) share the same color
(see Figure 1). Consider the following three cases.

Case I. If there is a circle having at least two different
colors in G, we denote it as v1 → v2 → · · · → vh →
v1 w.l.o.g. From the construction of G, we know that
for any two neighborhoods in the circle, there are two
corresponding numbers from Γ which are both fractional
and share the same region. Let the couples of numbers
be

(x1
∗1
, x2

∗1
), (x2

∗2
, x3

∗2
), · · · , (xh

∗h
, x1

∗h
). (5)

Here we denote the foot subscripts by ∗j to simplify
our analysis. If there exist two consecutive edges
sharing the same color, e.g., v1v2 and v2v3, from the
construction of G we know that v1 and v3 are connected
by an edge with the same color as well. Hence we can
always delete v2 from the circle and add the edge v1v3.
Therefore we can assume that any neighbor edges have
different colors in the circle, i.e., the following claim.

Claim. ∗j−1 �= ∗j for 2 ≤ j ≤ h and ∗h �= ∗1.

Meanwhile, we choose the small positive value

δ = min{xj
∗j

− �xj
∗j
�, �xj

∗j−1
� − xj

∗j−1
| 1 ≤ j ≤ h} (6)

where x1
∗0

represents x1
∗h

for convenience. Together with
the above claim we know that the following numbers

x1
∗1 − δ, x2

∗1 + δ, x2
∗2 − δ, x3

∗2 + δ, · · · , xh
∗h − δ, x1

∗h + δ (7)

contain at least one integer and all the others remain
non-negative (see Figure 2). More importantly, no
constraint of the SoL is violated after this adjustment.
Since this operation adds new integers to Γ, we have
to remove some edges of G due to the rule of its
construction. If we keep adjusting the fractional values
of Γ by this way, the edges of G will become fewer
and fewer. After finite steps, there will be no circle or
each circle has only one color, i.e., one of the next two
cases happens. Actually the following two cases can be
handled by similar manners. In order to show our idea
more clearly, we discuss the simpler one, Case II, first.

���������� ����������

����������

�������� ����������

����������

Figure 2: An illustration for adjusting the fractional
numbers for Case I. The left shows an example circle
with h = 3 and the couples of numbers. The right
shows the couples of numbers after the adjustment with
δ = 0.1.

Case II. Now, we consider the second case that no circle
exists in G; in other words, G is a forest. Different to the
first case, we arbitrarily pick a leaf-to-leaf path in G and
denote it as v1 → v2 → · · · → vh, i.e., v1 and vh are two
leaves in G (see Figure 3). Also from the construction
of G, we have the following couples of fractional values

(x1
∗1
, x2

∗1
), (x2

∗2
, x3

∗2
), · · · , (xh−1

∗h−1
, xh

∗h−1
). (8)

Moreover, it is easy to know that ∗j �= ∗j+1 for 1 ≤
j ≤ h− 2; otherwise, there will be a circle vj → vj+1 →
vj+2 → vj due to the construction of G (which is contra-
dict to the definition of Case II). Because v1 is a leaf, we
know that only one number of {x1

∗ | ∗ ∈ π1} is fractional
and thus

�
∗∈π x

1
∗ is fractional. Note that both L and

U are integers, so the constraint (4) is not tight in both
sides for jl = 1, and similarly for jl = h too. We choose
δ = min{xj

∗j − �xj
∗j�, �xj+1

∗j � − xj+1
∗j | 1 ≤ j ≤ h − 1}.

Through the same manner for analyzing the first case,
we know that the following numbers

x1
∗1

− δ, x2
∗1

+ δ, x2
∗2

− δ, x3
∗2

+ δ,

· · · , xh−1
∗h−1

− δ, xh
∗h−1

+ δ (9)

181

29th Canadian Conference on Computational Geometry, 2017

contain at least one integer and all the others remain
non-negative, while no constraint of the SoL is violated.
In particular, the constraint (4) for jl = 1 and h
still holds since they are not tight before. Then we
update G by removing some edges. If we keep per-
forming this adjustment finite times, G will contain no
edge. That is, we obtain an integer solution for the SoL.

Figure 3: The red edges indicate a leaf-to-leaf path in
the tree. The original edge colors are omitted here for
the sake of simplicity.

Case III. The third case is that G only contains the
circles having single color. We will show that this case
can be handled by a similar way of Case II. First, we
know that there are the following two different types of
vertices in G. Type i: the vertex not belonging to any
circle; Type ii: the vertex belonging to some circle.
Due to the construction of G we know that the vertices
belonging to a circle actually form a clique, and all
of them are type ii. So we build a pseudo tree for G
recursively as follows.

Pseudo-tree(G)

1. Initially, pick a vertex v arbitrarily from G.

2. If v is type i, take it as the root. Else, take the
whole clique C containing v as the root.

3. Delete v (if type i) or C (if type ii) and its induced
edges. If the remaining of G is not empty, it will
become a set of disjoint components {G1, · · · , Gt}.

4. For each component Gi, add Pseudo-tree(Gi) as a
child of v or C.

Figure 4: An example of pseudo tree. The edge colors
are omitted here for the sake of simplicity.

Pseudo-tree(G) returns a pseudo tree where each
node is either a type i vertex or a clique of type ii ver-
tices (see Figure 4). Similar to Case II, we take an ar-
bitrary leaf-to-leaf path of G. If both of the two leaves

are type i vertices, we can adjust the fractional num-
bers along the path as same as Case II, and update G
by removing some edges. Otherwise, we focus on the
leaf that is a clique C of type ii vertices. Note that C
contains at least three vertices, and only one of them
has an outward edge from the clique (because it is a
leaf). Suppose that the two vertices having no out-
ward edge are v1 and v2, and the corresponding two
fractional numbers are x1

∗1
and x2

∗1
respectively. Let

δ = min{x1
∗1

−�x1
∗1
�, �x2

∗1
�− x2

∗1}. Then at least one of

x1
∗1

− δ and x2
∗1

+ δ (10)

is an integer, and the other remains non-negative. Sim-
ilar to Case II, we know that all the constraints of the
SoL are not violated, and thus an update of G follows.
After finite times of such an adjustment, G will become
either Case II or a graph containing no edge (i.e., an
integer solution of the SoL is obtained).

Finally, because the complexity of the initial G is
O(poly(2k)), the whole adjustment costs O(poly(2k))
time as well and is independent of n. �

2.3 The 4-Approximation Algorithm

Combining Section 2.1 & 2.2, we have Algorithm 1.
Step 1 & 2 cost O(knd + nk log(nk)) time, and step 3
runs at most O(kk log n) rounds where each round costs
O(n+ poly(2k)) times. Thus, the total running time is
O(n(logn+ d)) if k is a constant.

Theorem 3 Algorithm 1 yields a 4-approximation of
balanced k-center clustering, and the running time is
O(n(logn+ d)) when k is a constant.

Corollary 4 Suppose the given instance locates in a
metric space, and the time complexity for acquiring the
distance between any two points is O(D). Algorithm 1
yields a 4-approximation of balanced k-center cluster-
ing, and the running time is O(n(logn+D)) when k is
a constant.

3 Other Issues

Finally, we address two questions: (1) is the approxi-
mation ratio 4 tight enough, and (2) why should we use
Sk rather than S directly?

For the first question, we consider the following ex-
ample. Let n = 6 points locate on a line, k = 3, and
L = U = 2. See Figure 5. It is easy to know that
the optimal solution is C1 = {p1, p2}, C2 = {p3, p4},
and C3 = {p5, p6} with ropt = 1. Suppose that the
first point selected by Gonazlez’s algorithm is p2, then
the induced S = {p2, p5, p1} which results in a (4 − δ)-
approximation, no matter which 3-tuple is chosen from
S3. Since δ can be arbitrarily small, the approximation
ratio 4 is tight.

182

CCCG 2017, Ottawa, Ontario, July 26–28, 2017

Algorithm 1 4-Approximation Algorithm

Input: P = {pi, | 1 ≤ i ≤ n} ⊂ Rd, an integer k ≥ 1,
and integer lower and upper bounds 1 ≤ L ≤ U ≤ n.

1. Run Gonazlez’s algorithm and output k points
S = {s1, s2, · · · , sk}.

2. Compute the nk distances from P to S, and sort
them in an increasing order. The set of distances
is denoted as R. Initialize the optimal radius
ropt = maxR.

3. For each k-tuple (s�1, · · · , s�k) from Sk, binary
search on R. For each step with r ∈ R, do the
following steps.

(a) Draw the k balls with radii r and centered
at (s�1, · · · , s�k) separately.

(b) If the SoL is feasible,

• update ropt to be r and record the fea-
sible solution if r < ropt;

• if r is not a leaf, continue the binary
search to the left side. Else, stop binary
search.

(c) Else,

• if r is not a leaf, continue the binary
search to the right side. Else, stop bi-
nary search.

4. Return the k-tuple from Sk with the smallest ropt
associating the corresponding feasible solution.

p1p1 p2p2 p3p3 p4p4 p5, p6p5, p6

C1C1 C2C2 C3C3

2 2− δ2− δ 2 2− δ2− δ

Figure 5: ||p1 − p2|| = ||p3 − p4|| = 2 and ||p2 − p3|| =
||p4 − p5|| = 2 − δ with a small positive δ; p5 and p6
overlap.

We construct another example to answer the second
question. See Figure 6. It is easy to know ropt = r.
Suppose that the first point selected by Gonazlez’s al-
gorithm is p1, then the induced S = {p1, p5, p6}. If we
take these 3 points as the cluster centers, the obtained
radius is at least h (since p3 and p4 have to be assigned
to p6). Consequently, the approximation ratio is h/r
which can be arbitrarily large. Hence we need to search
the k-tuple points from Sk rather than S.

p1, p2p1, p2

p5p5

p6p6

p3, p4p3, p4

r
l

h

Figure 6: Let the 6 points locate in a plane, k = 3, and
L = U = 2. p1 and p2 overlap, p3 and p4 overlap, and
these 4 points locate on the same vertical line while p5
and p6 locate on another vertical line; ||p1 − p3|| = l,
||p5 − p6|| = 2r, and their horizontal distance is h; l <
2r � h.

4 Acknowledgements

The author was supported by a start-up fund from
Michigan State University and CCF-1656905 from NSF.
Part of the work was done when the author was in IIIS,
Tsinghua University and Simons Institute, UC Berke-
ley. The author also wants to thank Jian Li, Lingxiao
Huang, and Yu Liu for their helpful discussion.

References

[1] G. Aggarwal, R. Panigrahy, T. Feder, D. Thomas,
K. Kenthapadi, S. Khuller, and A. Zhu, Achieving
anonymity via clustering. ACM Trans. Algorithms 6(3),
49:1-49:19 (2010).

[2] S. Ahmadian and C. Swamy, Approximation algorithms
for clustering problems with lower bounds and outliers.
arXiv preprint arXiv:1608.01700 (2016).

[3] H. C. An, A. Bhaskara, C. Chekuri, S. Gupta, V.
Madan, and O. Svensson, Centrality of trees for capac-
itated k-center. Mathematical Programming 154(1-2),
29-53 (2015).

[4] K. Aydin, M. Bateni, and V. S. Mirrokni, Distributed
Balanced Partitioning via Linear Embedding. WSDM
2016: 387-396.

[5] J. Barilan, G. Kortsarz, and D. Peleg, How to allocate
network centers. Journal of Algorithms 15(3), 385-415
(1993).

[6] M. Bateni, A. Bhaskara, S. Lattanzi, and V. S. Mir-
rokni, Distributed Balanced Clustering via Mapping
Coresets. NIPS 2014: 2591-2599.

[7] M. Cygan, M. Hajiaghayi, and S. Khuller, Lp round-
ing for k-centers with non-uniform hard capacities. 53rd
Annual Symposium on Foundations of Computer Sci-
ence. pp. 273-282. IEEE Computer Society (2012).

[8] T. Dick, M. Li, V. Pillutla, C. White, M.-F. Balcan,
and A. J. Smola, Data Driven Resource Allocation for
Distributed Learning. CoRR abs/1512.04848 (2015).

183

29th Canadian Conference on Computational Geometry, 2017

[9] H. Ding, L. Hu, L. Huang, and J. Li, Capacitated
Center Problems with Two-Sided Bounds and Outliers.
CoRR abs/1702.07435 (2017).

[10] A. Ene, S. Har-Peled, and B. Raichel, Fast clustering
with lower bounds, No customer too far, no shop too
small. arXiv preprint arXiv:1304.7318 (2013).

[11] T. Gonzalez, Clustering to minimize the maximum in-
tercluster distance. Theoret. Comput. Sci., 38:293-306,
1985.

[12] D. S. Hochbaum and D. B. Shmoys, A best possible
heuristic for the k-center problem. Mathematics of op-
erations research 10(2), 180-184 (1985).

[13] L. Kaufman and P. J. Roussew, Finding Groups in Data
- An Introduction to Cluster Analysis. A Wiley-Science
Publication John Wiley & Sons, 1990.

[14] S. Khuller and Y. J. Sussmann, The capacitated k-
center problem. SIAM Journal on Discrete Mathematics
13(3), 403-418 (2000).

[15] T. Kociumaka and M. Cygan, Constant factor approx-
imation for capacitated k-center with outliers. arXiv
preprint arXiv:1401.2874 (2014).

[16] J. B. Orlin, Max flows in O(nm) time, or better. STOC
2013: 765-774.

184

