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Sharing a pizza: bisecting masses with two cuts

Luis Barba∗ † Patrick Schnider∗

Abstract

Assume you have a pizza consisting of four ingredients
(e.g. bread, tomatoes, cheese and olives) that you want
to share with your friend. You want to do this fairly,
meaning that you and your friend should get the same
amount of each ingredient. How many times do you
need to cut the pizza so that this is possible? We
will show that two straight cuts always suffice. More
formally, we will show the following extension of the
well-known Ham-sandwich theorem: Given four mass
distributions in the plane, they can be simultaneously
bisected with two lines. That is, there exist two ori-
ented lines with the following property: let R+

1 be the
region of the plane that lies to the positive side of both
lines and let R+

2 be the region of the plane that lies to
the negative side of both lines. Then R+ = R+

1 ∪ R+
2

contains exactly half of each mass distribution. Addi-
tionally, we prove that five mass distributions in R3 can
be simultaneously bisected by two planes.

1 Introduction

The famous Ham-sandwich theorem (see e.g. [11, 14])
states that any d mass distributions in Rd can be si-
multaneously bisected by a hyperplane. In particular, a
two-dimensional sandwich consisting of bread and ham
can be cut with one straight cut in such a way that each
side of the cut contains exactly half of the bread and
half of the ham. However, if two people want to share a
pizza, this result will not help them too much, as pizzas
generally consist of more than two ingredients. There
are two options to overcome this issue: either they don’t
use a straight cut, but cut along some more complicated
curve, or they cut the pizza more than once. In this pa-
per we investigate the latter option. In particular we
show that a pizza with four ingredients can always be
shared fairly using two straight cuts. See Figure 1 for
an example.

To phrase it in mathematical terms, we show that
four mass distributions in the plane can be simultane-
ously bisected with two lines. A precise definition of
what bisecting with n lines means is given in the Prelim-
inaries. We further show that five mass distributions in
R3 can be simultaneously bisected by two planes. These
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Figure 1: Sharing a (not necessarily round) pizza fairly
with two cuts. One person gets the parts in the light
blue region, the other person gets the parts in the green
region.

two main results are proven in Section 2. In Section 3
we go back to the two-dimensional case and add more
restrictions on the lines. In Section 4 we look at the
general case of bisecting mass distributions in Rd with
n hyperplanes, and show an upper bound of nd mass
distributions that can be simultaneously bisected this
way. We conjecture that this bound is tight, that is,
that any nd mass distributions in Rd can be simultane-
ously bisected with n hyperplanes. For d = 1, this is
the well-known Necklace splitting problem, for which an
affirmative answer to our conjecture is known [6, 11].
So, our general problem can be seen as both a general-
ization of the Ham-sandwich theorem for more than one
hyperplane, as well as a generalization of the Necklace
splitting problem to higher dimensions.

Additionally, our results add to a long list of results
about partitions of mass distributions, starting with the
already mentioned Ham-sandwich theorem. A general-
ization of this is the polynomial Ham-sandwich theorem,
which states that any

�
n+d
d

�
−1 mass distributions in Rd

can be simultaneously bisected by an algebraic surface
of degree n [14]. Applied to the problem of sharing a
pizza, this result gives an answer on how complicated
the cut needs to be, if we want to use only a single
(possibly self-intersecting) cut.

Several results are also known about equipartitions of
mass distributions into more than two parts. A straight-
forward application of the 2-dimensional Ham-sandwich
theorem is that any mass distribution in the plane can
be partitioned into four equal parts with 2 lines. It
is also possible to partition a mass distribution in R3

into 8 equal parts with three planes, but for d ≥ 5, it
is not always possible to partition a mass distribution
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into 2d equal parts using d hyperplanes [5]. The case
d = 4 is still open. A result by Buck and Buck [4] states
that a mass distribution in the plane can be partitioned
into 6 equal parts by 3 lines passing through a common
point. Several results are known about equipartitions
in the plane with k-fans, i.e., k rays emanating from a
common point. Note that 3 lines going through a com-
mon point can be viewed as a 6-fan, thus the previously
mentioned result shows that any mass partition in the
plane can be equipartitioned by a 6-fan. Motivated by a
question posed by Kaneko and Kano [8], several authors
have shown independently that 2 mass distributions in
the plane can be simultaneously partitioned into 3 equal
parts by a 3-fan [2, 7, 12]. The analogous result for 4-
fans holds as well [1]. Partitions into non-equal parts
have also been studied [15]. All these results give a very
clear description of the sets used for the partitions. If
we allow for more freedom, much more is possible. In
particular, Soberón [13] and Karasev [9] have recently
shown independently that any d mass distributions in
Rd can be simultaneously equipartitioned into k equal
parts by k convex sets. The proofs of all of the above
mentioned results rely on topological methods, many of
them on the famous Borsuk-Ulam theorem and gener-
alizations of it. For a deeper overview of these types of
arguments, we refer to Matoušek’s excellent book [11].

Preliminaries

A mass distribution µ on Rd is a measure on Rd such
that all open subsets of Rd are measurable, 0 < µ(Rd) <
∞ and µ(S) = 0 for every lower-dimensional subset S of
Rd. Let L be a set of oriented hyperplanes. For each � ∈
L, let �+ and �− denote the positive and negative side
of �, respectively (we consider the sign resulting from
the evaluation of a point in these sets into the linear
equation defining �). For every point p ∈ Rd, define
λ(p) := |{� ∈ L | p ∈ �+}| as the number of hyperplanes
that have p in their positive side. Let R+ := {p ∈ Rd |
λ(p) is even} and R− := {p ∈ Rd | λ(p) is odd}. We say
that L bisects a mass distribution µ if µ(R+) = µ(R−).
For a family of mass distributions µ1, . . . , µk we say that
L simultaneously bisects µ1, . . . , µk if µi(R

+) = µi(R
−)

for all i ∈ {1, . . . , k}.
More intuitively, this definition can also be under-

stood the following way: if C is a cell in the hyperplane
arrangement induced by L and C � is another cell shar-
ing a facet with C, then C is a part of R+ if and only
if C � is a part of R−. See Figure 2 for an example.

Let gi(x) := ai,1x1+. . .+ai,dxd+ai,0 ≥ 0 be the linear
equation describing �+i for �i ∈ L. Then the following
is yet another way to describe R+ and R−: a point
p ∈ Rd is in R+ if

�
�i∈L gi(p) ≥ 0 and it is in R− if�

�i∈L gi(p) ≤ 0. That is, if we consider the union of
the hyperplanes in L as an oriented algebraic surface of
degree |L|, then R+ is the positive side of this surface

R+

R−

Figure 2: The regions R+ (light blue) and R− (green).

and R− is the negative side.
Note that reorienting one line just maps R+ to R−

and vice versa. In particular, if a set L of oriented hy-
perplanes simultaneously bisects a family of mass dis-
tributions µ1, . . . , µk, then so does any set L� of the
same hyperplanes with possibly different orientations.
Thus we can ignore the orientations and say that a set
L of (undirected) hyperplanes simultaneously bisects a
family of mass distributions if some orientation of the
hyperplanes does.

2 Two Cuts

In this section we will look at simultaneous bisections
with two lines in R2 and with two planes in R3. Both
proofs rely on the famous Borsuk-Ulam theorem [3],
which we will use in the version of antipodal map-
pings. An antipodal mapping is a continuous mapping
f : Sd → Rd such that f(−x) = −f(x) for all x ∈ Sd.

Theorem 1 (Borsuk-Ulam theorem [11]) For ev-
ery antipodal mapping f : Sd → Rd there exists a point
x ∈ Sd satisfying f(x) = 0.

The proof of the Ham-sandwich theorem can be de-
rived from the Borsuk-Ulam theorem in the following
way. Let µ1 and µ2 be two mass distributions in R2.
For a point p = (a, b, c) ∈ S3, consider the equation
of the line ax + by + c = 0 and note that it defines a
line in the plane parametrized by the coordinates of p.
Moreover, it splits the plane into two regions, the set
R+(p) = {(x, y) ∈ R2 : ax + by + c ≥ 0} and the set
R−(p) = {(x, y) ∈ R2 : ax + by + c ≤ 0}. Thus, we
can define two functions fi := µi(R

+(p)) − µi(R
−(p))

that together yield a function f : S2 → R2 that is
continuous and antipodal. Thus, by the Borsuk-Ulam
theorem, there is a point p = (a, b, c) ∈ S2, such that
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fi(−p) = −fi(p) for i ∈ {1, 2}, which implies that the
line ax+by+c = 0 defined by p is a Ham-sandwich cut.
In this paper, we use variants of this proof idea to ob-
tain simultaneous bisections by geometric objects that
are parametrized by points in Sd. The main difference
is that we replace some of the fi’s by other functions,
whose vanishing enforces specific structural properties
on the resulting bisecting object. We are now ready to
prove our first main result:

Theorem 2 Let µ1, µ2, µ3, µ4 be four mass distribu-
tions in R2. Then there exist two lines �1, �2 such that
{�1, �2} simultaneously bisects µ1, µ2, µ3, µ4.

Proof. For each p = (a, b, c, d, e, g) ∈ S5 consider the
bivariate polynomial c(p)(x, y) = ax2+by2+cxy+dx+
ey+g. Note that c(p)(x, y) = 0 defines a conic section in
the plane. Let R+(p) := {(x, y) ∈ R2 | c(p)(x, y) ≥ 0}
be the set of points that lie on the positive side of
the conic section and let R−(p) := {(x, y) ∈ R2 |
c(p)(x, y) ≤ 0} be the set of points that lie on its
negative side. Note that for p = (0, 0, 0, 0, 0, 1) we
have R+(p) = R2 and R−(p) = ∅, and vice versa for
p = (0, 0, 0, 0, 0,−1). Also note that R+(−p) = R−(p).
We now define four functions fi : S

5 → R as follows: for
each i ∈ {1, . . . , 4} define fi := µi(R

+(p))− µi(R
−(p)).

From the previous observation it follows immediately
that fi(−p) = −fi(p) for all i ∈ {1, . . . , 4} and p ∈ S5.
It can also be shown that the functions are continuous,
but for the sake of readability we postpone this step to
the end of the proof. Further let

A(p) := det




a c/2 d/2
c/2 b e/2
d/2 e/2 g


 .

It is well-known that the conic section c(p)(x, y) = 0
is degenerate if and only if A(p) = 0. Furthermore,
being a determinant of a 3 × 3-matrix, A is continu-
ous and A(−p) = −A(p). Hence, setting f5(p) := A(p),
f := (f1, . . . , f5) is an antipodal mapping from S5 to R5,
and thus by the Borsuk-Ulam theorem, there exists p∗

such that f(p∗) = 0. For each i ∈ {1, . . . , 4} the condi-
tion fi(p

∗) = 0 implies by definition that µi(R
+(p∗)) =

µi(R
−(p∗)). The condition f5(p

∗) = 0 implies that
c(p)(x, y) = 0 describes a degenerate conic section, i.e.,
two lines, a single line of multiplicity 2, a single point or
the empty set. For the latter three cases, we would have
R+(p∗) = R2 andR−(p∗) = ∅ or vice versa, which would
contradict µi(R

+(p∗)) = µi(R
−(p∗)). Thus f(p∗) = 0

implies that c(p)(x, y) = 0 indeed describes two lines
that simultaneously bisect µ1, µ2, µ3, µ4.

It remains to show that fi, is continuous for i ∈
{1, . . . , 4}. To that end, we will show that µi(R

+(p)) is
continuous. The same arguments apply to µi(R

−(p)),
which then shows that fi being the difference of two
continuous functions is continuous. So let (pn)

∞
n=1 be a

sequence of points in S5 converging to p. We need to
show that µi(R

+(pn)) converges to µi(R
+(p)). If a point

q is not on the boundary of R+(p), then for all n large
enough we have q ∈ R+(pn) if and only if q ∈ R+(p).
As the boundary of R+(p) has dimension 1 and µi is
a mass distribution we have µi(∂R

+(p)) = 0 and thus
µi(R

+(pn)) converges to µi(R
+(p)) as required. �

Using similar ideas, we can also prove a result in R3.
For this we first need the following lemma:

Lemma 3 Let h(x, y, z) be a quadratic polynomial in 3
variables. Then there are antipodal functions g1, . . . , g4,
each from the space of coefficients of h to R, whose si-
multaneous vanishing implies that h factors into linear
polynomials.

Proof. Write h as

h = (x, y, z, 1) ·A · (x, y, z, 1)T ,
where A is a 4 × 4-matrix depending on the coeffi-

cients of h. It is well-known that h factors into linear
polynomials if and only if the rank of A is at most 2. A
well-known sufficient condition for this is that the de-
terminants of all (3× 3)-minors of A vanish. There are�
4
3

�
= 4 different (3 × 3)-minors and for each of them

the determinant is an antipodal function. �

With this, we can now prove the following:

Theorem 4 Let µ1, . . . , µ5 be five mass distributions in
R3. Then there exist two planes �1, �2 such that {�1, �2}
simultaneously bisects µ1, . . . , µ5.

Proof. Similar to the proof of Theorem 2, we map a
point p ∈ S9 to a quadratic polynomial h(p)(x, y, z)
(note that a quadratic polynomial in three variables
has 10 coefficients). Let R+(p) := {(x, y, z) ∈ R2 |
h(p)(x, y, z) ≥ 0} be the set of points that lie on the
positive side of the conic section and let R−(p) :=
{(x, y, z) ∈ R3 | h(p)(x, y) ≤ 0} be the set of points
that lie on the negative side. For each i ∈ {1, . . . , 5}
define fi := µi(R

+(p)) − µi(R
−(p)). Analogous to

the proof of Theorem 2, these functions are continu-
ous and fi(−p) = −fi(p). Further let g1, . . . , g4 be
the four functions constructed in Lemma 3. Then
f := (f1, . . . , f5, g1, . . . , g4) is a continuous antipodal
mapping from S9 to R9. Thus, by the Borsuk-Ulam the-
orem there exists a point p∗ ∈ S9 such that f(p∗) = 0.
Analogous to the proof of Theorem 2, the existence of
such a point implies the claimed result. �

3 Putting more restrictions on the cuts

In this section, we look again at bisections with two
lines in the plane. However, we enforce additional con-
ditions on the lines, at the expense of being only able
to simultaneously bisect fewer mass distributions.
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Theorem 5 Let µ1, µ2, µ3 be three mass distributions
in R2. Given any line � in the plane, there exist
two lines �1, �2 such that {�1, �2} simultaneously bisects
µ1, µ2, µ3 and �1 is parallel to �.

Proof. Assume without loss of generality that � is par-
allel to the x-axis; otherwise rotate µ1, µ2, µ3 and � to
achieve this property. Consider the conic section defined
by the polynomial ax2+by2+cxy+dx+ey+g. If a = 0
and the polynomial decomposes into linear factors, then
one of the factors must be of the form βy + γ. In par-
ticular, the line defined by this factor is parallel to the
x-axis. Thus, we can modify the proof of Theorem 2 in
the following way: we define f1, f2, f3 and f5 as before,
but set f4 := a. It is clear that f still is an antipodal
mapping. The zero of this mapping now implies the ex-
istence of two lines simultaneously bisecting three mass
distributions, one of them being parallel to the x-axis,
which proves the result. �

Another natural condition on a line is that it has to
pass through a given point.

Theorem 6 Let µ1, µ2, µ3 be three mass distributions
in R2 and let q be a point. Then there exist two lines
�1, �2 such that {�1, �2} simultaneously bisects µ1, µ2, µ3

and �1 goes through q.

Proof. Assume without loss of generality that q coin-
cides with the origin; otherwise translate µ1, µ2, µ3 and
q to achieve this. Consider the conic section defined by
the polynomial ax2 + by2 + cxy + dx+ ey + g. If g = 0
and the polynomial decomposes into linear factors, then
one of the factors must be of the form αx+ βy. In par-
ticular, the line defined by this factor goes through the
origin. Thus, we can modify the proof of Theorem 2 in
the following way: we define f1, f2, f3 and f5 as before,
but set f4 := g. It is clear that f still is an antipo-
dal mapping. The zero of this mapping now implies
the existence of two lines simultaneously bisecting three
mass distributions, one of them going through the ori-
gin, which proves the result. �

We can also enforce the intersection of the two lines
to be at a given point, but at the cost of another mass
distribution.

Theorem 7 Let µ1, µ2 be two mass distributions in R2

and let q be a point. Then there exist two lines �1, �2
such that {�1, �2} simultaneously bisects µ1, µ2, and both
�1 and �2 go through q.

Proof. Assume without loss of generality that q coin-
cides with the origin; otherwise translate µ1, µ2 and q
to achieve this. Consider the conic section defined by
the polynomial ax2 + by2 + cxy, i.e., the conic section
where d = e = g = 0. If this conic section decomposes

into linear factors, both of them must be of the form
αx+ βy = 0. In particular, both of them pass through
the origin. Furthermore, as d = e = g = 0, the de-
terminant A(p) vanishes, which implies that the conic
section is degenerate. Thus, we can modify the proof
of Theorem 2 in the following way: we define f1, f2 as
before, but set f3 := d, f4 := e and f5 := g. It is clear
that f still is an antipodal mapping. The zero of this
mapping now implies the existence of two lines simulta-
neously bisecting two mass distributions, both of them
going through the origin, which proves the result. �

4 The general case

In this section we consider the more general question
of how many mass distributions can be simultaneously
bisected by n hyperplanes in Rd. We introduce the fol-
lowing conjecture:

Conjecture 1 Any n · d mass distributions in Rd can
be simultaneously bisected by n hyperplanes.

For n = 1 this is equivalent to the Ham-sandwich
theorem. Theorem 2 proves this conjecture for the case
d = n = 2. We first observe that the number of mass
distributions would be tight:

Observation 1 There exists a family of n · d+ 1 mass
distributions in Rd that cannot be simultaneously bi-
sected by n hyperplanes.

Proof. Let P = {p1, . . . , pnd+1} be a finite point set in
Rd in general position (no d + 1 of them on the same
hyperplane). Let � be the smallest distance of a point
to a hyperplane defined by d other points. For each
i ∈ {1, . . . , nd + 1} define µi as the volume measure of
Bi := Bpi

( �2 ). Note that any hyperplane intersects at
most d of the Bi’s. On the other hand, for a family of
n hyperplanes to bisect µi, at least one of them has to
intersect Bi. Thus, as n hyperplanes can intersect at
most n · d different Bi’s, there is always at least one µi

that is not bisected. �

A possible way to prove the conjecture would be to
generalize the approach from Section 2 as follows: Con-
sider the n hyperplanes as a highly degenerate alge-
braic surface of degree n, i.e., the zero set of a polyno-
mial of degree n in d variables. Such a polynomial has
k :=

�
n+d
d

�
coefficients and can thus be seen as a point

on Sk−1. In particular, we can define
�
n+d
d

�
− 1 antipo-

dal mappings to R if we want to apply the Borsuk-Ulam
theorem. Using n · d of them to enforce the mass distri-
butions to be bisected, we can still afford

�
n+d
d

�
−nd−1

antipodal mappings to enforce the required degenera-
cies of the surface. There are many conditions known
to enforce such degeneracies, but they all require far
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too many mappings or use mappings that are not an-
tipodal. Nonetheless the following conjecture implies
Conjecture 1:

Conjecture 2 Let C be the space of coefficients of poly-
nomials of degree n in d variables. Then there exists a
family of

�
n+d
d

�
−nd−1 antipodal mappings gi : C → R,

i ∈ {1, . . . ,
�
n+d
d

�
− nd− 1} such that gi(c) = 0 for all i

implies that the polynomial defined by the coefficients c
decomposes into linear factors.

5 Algorithmic remarks

Going back to the planar case, instead of considering
four mass distributions µ1, . . . , µ4, one can think of hav-
ing four sets of points P1, . . . , P4 ⊂ R2. Thus, our prob-
lem translates to finding two lines that simultaneously
bisect these point sets. The existence of such a bisection
follows Theorem 2 as we can always replace each point
by a sufficiently small disk and consider their area as a
mass distribution.

An interesting question is then to find efficient algo-
rithms to compute such a bisection given any four sets
P1, . . . , P4 with a total of n points. It is known that lin-
ear time algorithms exist for Ham-sandwich cuts of two
sets of points in R2. However, we have not been able
to obtain similar results for simultaneous bisections us-
ing two lines. A trivial O(n5) time algorithm can be
applied by looking at all pairs of combinatorially differ-
ent lines. While this running time can be reduced using
known data structures, it still goes through Θ(n4) dif-
ferent pairs of lines. Finding a better algorithm remains
an interesting open question.

Using the algorithms for Ham-sandwich cuts from Lo,
Steiger and Matoušek [10], and a Veronese map one
can compute a conic section that simultaneously bisects
P1, . . . , P4 in O(n4−ε) time. It remains open whether
this algorithm can be modified to use the last degree of
freedom to guarantee the degeneracy of the conic section
and achieve o(n4) time.
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