
CCCG 2017, Ottawa, Ontario, July 26–28, 2017

Guarding Monotone Polygons with Half-Guards

Matt Gibson∗ Erik Krohn† Matthew Rayford‡

Abstract

We consider a variant of the art gallery problem where
all guards are limited to seeing to the right inside of
a monotone polygon. We provide a polynomial-time
4-approximation algorithm for a version of the prob-
lem where we wish to point-guard the vertices of the
polygon. We then extend this algorithm and provide a
O(1)-approximation to point-guard the boundary of the
polygon and ultimately the entire polygon.

1 Introduction

In the geometric set cover problem, we are given some set
of points P and a set S where each s ∈ S can cover some
subset of P . The subset of P is generally induced by
some geometric object. For example, P might be a set of
points in the plane, and s consists of the points contained
within some disk in the plane. For most variants, the
problem is NP-hard and can easily be reduced to an in-
stance of the combinatorial set cover problem which has a
polynomial-time O(log n)-approximation algorithm—the
best possible approximation under standard complexity
assumptions [5, 18, 10, 12, 17]. The main question is to
then determine which of the geometric set cover problem
variants we can obtain polynomial-time approximation
algorithms with approximation ratio o(log n), as any
such algorithm must exploit the geometry of the prob-
lem to achieve the result. This area has been studied
extensively, see for example [4, 21, 3], and much progress
has been made utilizing algorithms that are based on
solving the standard linear programming relaxation.
Unfortunately, these techniques do not work for set

cover variants based on visibility, such as the well-known
art gallery problem. An instance of the art gallery prob-
lem takes as input a simple polygon P . The polygon P
is defined by a set of points V = {v1, v2, . . . , vn}. There
are edges connecting {vi, vi+1} where i = 1, 2, . . . , n− 1
and an edge connecting {vn, v1}. If these edges do not
intersect other than at the points in V , then P is called
a simple polygon. The edges of a simple polygon give us
two disjoint regions: inside the polygon and outside the
polygon. For any two points p, q ∈ P , we say that p sees
q if the line segment pq does not go outside of P . The
art gallery problem seeks to find a set of points G ⊆ P

∗University of Texas at San Antonio, gibson@cs.utsa.edu
†University of Wisconsin - Oshkosh, krohne@uwosh.edu
‡University of Wisconsin - Oshkosh, rayfom16@uwosh.edu

such that every point p ∈ P is seen by some point in G.
We call this set G a guarding set. In the point-guarding
problem, guards can be placed anywhere inside of P . In
the vertex guarding problem, guards are only allowed to
be placed at vertices in V . The optimization problem is
thus defined as finding the smallest such G in each case.
These problems are motivated by applications such

as line-of-sight transmission networks in terrains, signal
communications and broadcasting, cellular telephony sys-
tems and other telecommunication technologies as well
as placement of motion detectors and security cameras.

1.1 Previous Work

The question of whether guarding simple polygons is
NP-hard was independently confirmed by Aggarwal [2]
and Lee and Lin [16]. They showed that the problem is
NP-hard for both vertex guarding and point-guarding.
Along with being NP-hard, Brodén et al. [6] and Ei-

denbenz [9] independently proved that point-guarding
simple polygons is APX-hard. This means that there
exists a constant � > 0 such that no polynomial-time
algorithm can guarantee an approximation ratio of (1+�)
unless P = NP. Ghosh provides aO(log n)-approximation
for the problem of vertex guarding an n-vertex simple
polygon in [11]. This result can be improved for sim-
ple polygons using randomization, giving an algorithm
with expected running time O(nOPT 2 log4 n) that pro-
duces a vertex guard cover with approximation factor
O(logOPT) with high probability, where OPT is the
smallest vertex guard cover for the polygon [8]. Whether
a polynomial time constant factor approximation al-
gorithm can be obtained for vertex guarding a simple
polygon is a longstanding and well-known open prob-
lem. Deshpande et al. [7] present a pseudopolynomial
randomized algorithm for finding a point-guard cover
with approximation factor O(logOPT). King and Kirk-
patrick provide a O(log logOPT)-approximation algo-
rithm for the problem of guarding a simple polygon with
guards on the perimeter in [13]. The point-guarding
problem seems to be much more difficult and little is
known about it [7].

Additional Polygon Structure. Due to the inherent
difficulty in fully understanding the art gallery problem
for simple polygons, there has been some work done
guarding polygons with some additional structure. A
simple polygon P is x-monotone (or simply monotone)
if any vertical line intersects the boundary of P at most

168

29th Canadian Conference on Computational Geometry, 2017

twice. Let l and r denote the leftmost and rightmost
vertices of P , respectively. Consider the “top half” of the
boundary of P by walking along the boundary clockwise
from l to r. We call this the ceiling of P . Similarly, we
obtain the floor of P by walking clockwise along the
boundary from r to l. Notice that both the ceiling and
the floor are x-monotone polygonal chains—that is a
vertical line intersects it in at most one point. Krohn
and Nilsson [15] give a polynomial-time constant factor
approximation algorithm for point-guarding monotone
polygons. They also proved point-guarding and vertex
guarding a monotone polygon is NP-hard [14, 15].

α-Floodlights. Motivated by the fact that many cam-
eras and other sensors generally are not able to sense in
360°, previous works have considered the problem when
guards have a fixed sensing angle α for some 0 < α ≤ 360.
This problem is often referred to as the α-floodlight prob-
lem. 180°-floodlights are sometimes referred to as half-
guards. Some of the work on this problem has involved
proving necessary and sufficient bounds on the number
of α-floodlights required to guard (or illuminate) an n
vertex simple polygon P , where floodlights are anchored
at vertices in P and no vertex is assigned more than
one floodlight, see for example [19, 20]. It is known that
computing a minimum cardinality set of α-floodlights
to illuminate a simple polygon P is APX-hard for both
the point-guard and vertex guard variants [1].

1.2 Our Contribution

In this paper, we consider guarding monotone polygons
with half-guards that can see in one direction, namely
to the right. Let p.x denote the x-coordinate of a point
p. We modify visibility in that the definition of sees is
changed to: a point p sees a point q if the line segment
pq does not go outside of P and p.x ≤ q.x.

g

Figure 1

Our main result is to give a
polynomial-time constant factor ap-
proximation algorithm for point-
guarding monotone polygons with
half-guards that see to the right.
Krohn and Nilsson [15] obtained a

similar result using full guards, but the algorithms are
quite different and many new observations are needed to
obtain the algorithm given in this paper. Indeed, note
that there are monotone polygons P that can be covered
with one full guard that require Ω(n) guards considered
in this paper (see for example, Figure 1).

The remainder of the paper is sectioned as follows:
in Section 2, we provide a 4-approximation for point-
guarding a monotone polygon using half-guards where we
wish to guard only the vertices of the polygon. In Section
3, we extend the algorithm given in Section 2 to provide
a 20-approximation for guarding the entire boundary of
the polygon. In Section 4, we extend the algorithm given
in Section 3 to provide a 40-approximation for guarding

the entire polygon.

2 Guarding the Vertices

In this section, we give a polynomial-time 4-
approximation algorithm for guarding the vertices of
a monotone polygon P with guards that see to the right.
We do this by first giving a 2-approximation algorithm
for guarding the vertices of the ceiling. We then have
the algorithm for the entire polygon by symmetrically
applying the ceiling algorithm to the vertices of the floor,
giving a 4-approximation for guarding all vertices of P .
Before we describe the algorithm, we provide some

preliminary definitions. The rightmost vertex that a
point p sees on the ceiling is denoted Rc(p). A vertical
line that goes through a point p is denoted lp. Given
two points p, q in P such that p.x < q.x, we use (p, q) to
denote the points r such that p.x < r.x < q.x. Similarly,
we use (p, q] to denote points r such that p.x < r.x ≤ q.x,
etc.

2.1 Ceiling Guard Algorithm

We first give a high level overview of our algorithm for
guarding the vertices of the ceiling. Any feasible solution
must place a guard at the leftmost vertex of the ceiling
(or this vertex will not be covered). We begin by placing
a guard here, and we iteratively place guards from left
to right. When placing a new guard, we let S denote the
guards we have already placed, and we let p denote the
leftmost vertex on the ceiling that is not seen by a guard
in S. The next guard we place, g, will lie somewhere
on the line lp. We initially place g at the intersection of
lp and the floor, and we slide g vertically along lp until
some condition holds. Let C(S) denote the set of ceiling
vertices seen by S, and let C(g) denote the set of ceiling
vertices seen by g. Note that as g slides up lp, ceiling
vertices may join and leave C(g) as the vertices on the
ceiling that g sees may change. Our algorithm locks in a
final position for the guard g by sliding it vertically along
lp until moving it any higher will cause g to no longer
see some vertex in C(g) \C(S) (the ceiling vertices seen
by g that are not seen by any previously placed guard).
See, for example, Figure 2. In this figure, initially g does
not see v, but as we slide g up the line lp, v becomes a
new vertex in C(g) \ C(S). If we slide g up any higher
than as depicted in the figure, then g would no longer
see v, and therefore we lock in the position of g. We
then add g to S, and we repeat this procedure until all
vertices on the ceiling are guarded. The formal ceiling
guarding algorithm is shown in Algorithm 1.

This algorithm clearly returns a set of guards that sees
every vertex on the ceiling. All steps, except the sliding
step, can be trivially done in polynomial time. Since the
polygon is simple, any vertex that is seen by a point on
lp must by seen by a contiguous line segment of lp. We

169

CCCG 2017, Ottawa, Ontario, July 26–28, 2017

Algorithm 1 Ceiling Guard

1: procedure Ceiling Guard(monotone polygon P)
2: S ← {s} such that s is placed at the leftmost

point l.
3: while there is an unseen ceiling vertex do
4: Let p be the leftmost ceiling vertex that is

currently unseen by any guards in S. Initially place
a guard g where lp intersects the floor. Slide g up
until it stops seeing some vertex v ∈ C(g) \C(S) on
the ceiling. Place g at the point on lp just before it
stopped seeing v.

5: S ← S ∪ {g}.
6: end while
7: return S
8: end procedure

g
Initial Rc(g)

p

v

Figure 2: Moving g ver-
tically on lp until it
stops seeing some ceil-
ing vertex v.

p x
Rc(g)

gr

Figure 3: A point r is
g-ceiling-dominated.

compute these line segments for each vertex that is seen
from lp. This takes O(n2) time. In the sliding step, we
only need to consider the top and bottom points of these
line segments. There are at most 2n of these points
on lp to consider during the sliding step. Therefore,
Algorithm 1 runs in polynomial time. It remains to
prove the approximation ratio.

2.2 Proof of Approximation

In this subsection, we will show that Algorithm 1 will
place no more than 2 times the number of guards in the
optimal solution. An optimal solution O is a minimum
cardinality guard set such that for any vertex v on the
ceiling of P , there exists some g ∈ O that sees v. The
argument will be a charging argument; every guard we
place will be charged to a guard in O in a manner such
that each guard in O will be charged at most twice.
We now provide a key lemma that will be used to

show that we do not charge a guard of O more than
twice. Consider some guard g chosen by the algorithm,
and let Sg denote the set of guards consisting of g and
every guard that we chose prior to g. For any point r in
P , we say that r is g-ceiling-dominated if every ceiling
vertex to the right of g seen by r is also seen by some
g� ∈ Sg.

Lemma 1 Consider a guard g placed in step 5 of the
algorithm. A point r that is to the left of g and below

the ray
−−−−→
Rc(g)g is g-ceiling-dominated.

Proof. Let x denote a ceiling vertex that is seen by r
to the right of p (inclusive). The proof will consider two
cases depending on if the line segment rx intersects lp
below or above g. In both scenarios, we prove that xmust
be seen by some guard in Sg. The lemma immediately
follows. We will again let S denote the guards placed
prior to g (i.e., S = Sg \ {g}).
First suppose that rx intersects lp at g or below g.

While sliding g up lp, it would have passed through the
intersection point of rx and lp, and therefore g saw x at
this point in time. If x is not seen by some guard in S,
then the final placement of g must see x as well. If the
final placement of g is such that g does not see x, then
it must be that x was already seen by some guard in S.
Therefore it must be that x is seen by some guard in Sg.

Now let x be such that rx intersects lp strictly above
the final placement of g. For this to be the case, it must
be that x is in [p,Rc(g)] since r is left of g and is below−−−−→
Rc(g)g. We will show that g must also see x. If g does
not see x then either the floor must “pierce” gx from
below or the ceiling must pierce gx from above. The floor
cannot block g from x because it would also block g from
Rc(g), and the ceiling cannot block g from x because
otherwise it would also block r from x. Therefore g sees
x. See Figure 3. �

We now describe our method of charging the guards
chosen by our algorithm to the guards in O. When we
place a guard g, we will charge g to some guard in O to
the left of g. We prove by induction that when we place
our guard g, we can charge g to a guard in O that has
previously been charged at most once.

Base case: Our algorithm places a guard at the
leftmost point and there must also be an optimal guard
at this point. If this were not the case, then the optimal
solution would not have guarded the leftmost point. We
charge our guard to this optimal guard. Our base case
then considers the first guard our algorithm places in the
while loop. Consider the placement of this guard g. Let
p be the first ceiling vertex not seen by the initial guard;
the initial optimal guard also does not see p. Therefore,
the optimal solution must have an uncharged guard o
on lp or to the left of lp, and we can charge g to o.

Inductive Step: We assume the inductive hypothesis
holds true for the first k − 1 iterations of the while
loop and we are on the kth iteration. We consider the
placement of guard g and the vertical line lp that it is
on. Let f denote the guard placed in iteration k − 1,
and let lf denote the vertical line it is on, see Figure 4.
We consider two cases depending on whether there is a
guard in O that is in (f, g].

170

29th Canadian Conference on Computational Geometry, 2017

f

lf

g

p

lg

vg
vf

o

Figure 4: An optimal
guard o to the left of lf
that can see p.

g

g�

a
b

Figure 5: Guard g does
not see b since a is block-
ing it; {a, b} is not en-
tirely seen.

Case 1: There is an o ∈ O in (f, g]. All previously
charged guards o� ∈ O satisfy o�.x ≤ f.x, and therefore
o has not had a guard charged to it. We charge g to o.

Case 2: There is no optimal guard in (f, g]. In this case,
we show that an optimal guard o� is f -ceiling-dominated
when f was placed and o� was not f �-ceiling-dominated
for any guard f � placed by the algorithm prior to placing
f . We charge g to o�. An optimal guard o� can only be
charged by this procedure in the iteration immediately
after it becomes dominated, and therefore it can only
be charged once by this case.

Since there is no optimal guard in (f, g], p must be
seen by an optimal guard o such that o.x ≤ f.x. We
will show that the line segment op must cross the line
lf strictly above f . If it crosses lf through or below the
final placement of f , then f must have seen p at some
point while sliding vertically. It follows that either f
sees p or some previous guard sees p, a contradiction.
Therefore it must be that op crosses lf strictly above f .

When we placed f , it slid vertically until it would have
lost sight of some ceiling vertex vf that was not seen by
any previous guard. We will first show that vf must be
to the left of p. Since f does not see p, some part of P
must block f from seeing p. The ceiling cannot block
f from p because it would also block o from seeing p
(since op crosses above f). If vf were to the right of p,
then the floor would not be able to block f from p either
because it would also block f from seeing vf . Therefore
it must be that vf is to the left of p.

Now let o� ∈ O denote an optimal guard that sees vf .
We will show that o� is f -ceiling-dominated by Lemma
1. Since we are in Case 2, it must be that o�.x ≤ f.x. It

remains to show that o� is below the ray
−−−−→
Rc(f)f . We

will do this by showing that o� is below the ray
−−→
vff , and

therefore must also be below
−−−−→
Rc(f)f if vf �= Rc(f). It

follows that o� is below
−−→
vff due to the manner in which

the location of f was chosen. The point f stopped sliding
when it would have lost sight of vf , and in particular, it
must be that the ceiling would prevent f from seeing vf
because f is only sliding vertically. Therefore any point
in P that is to the left of f and is above the ray

−−→
vff must

also be blocked from seeing vf . Since o� sees vf , it must

be that o� is below the ray
−−→
vff , satisfying the conditions

of Lemma 1, and therefore is f -ceiling-dominated.
We charge g to o�. Since o� sees vf (vf was not guarded

by our algorithm until we placed f), it must be that o�

was not dominated prior to the placement of f . Thus o�

can be charged a guard by this procedure only once.
This completes our charging scheme, which charges

each guard g picked by our algorithm to an optimal
guard in O. We have shown that each guard in O can
be charged at most once in Case 1 and at most once
in Case 2, and therefore our algorithm returns a set of
guards of size at most 2|O|. By running this algorithm
on the ceiling and symmetrically applying the algorithm
on the floor, we have the following theorem.

Theorem 2 There is a polynomial-time 4-
approximation algorithm for point-guarding the
vertices of a monotone polygon with half-guards.

3 Guarding the Boundary

In the previous section, we provided an algorithm to
guard the vertices of the polygon with at most 4OPT
guards. However, the algorithm is not guaranteed to
guard the entire boundary, see Figures 5 and 6 for exam-
ple. We will now provide a modification of Algorithm 1
to ensure that the entire boundary is seen. Similar to the
last section, we begin by providing a polynomial-time
10-approximation algorithm that will cover the entire ceil-
ing. This algorithm can be symmetrically applied to the
floor to then give a polynomial-time 20-approximation
algorithm that covers the entire boundary of P .
Suppose we have a guard set S that covers all of the

vertices of the ceiling, and consider some edge {a, b} on
the ceiling such that a is to the left of b. If one guard
g ∈ S sees both a and b, then it is easy to see that g
sees the entire edge {a, b}. Therefore, if some edge is
not completely covered by S, then it must be that every
guard that sees a does not see b (and vice versa). At a
high level, our algorithm for guarding the entire ceiling
begins by covering the vertices of the ceiling similarly to
Algorithm 1. If at some point in time during this process
we have that our current guard set sees both vertices
of an edge but does not cover the entire edge, then we
place additional guards to ensure that the entire edge is
indeed covered.

For ease of description, we maintain two different sets
of guards: S and S�. S is the set of guards chosen to
cover vertices (similar to Algorithm 1), and S� is the set
of guards chosen to fill in a missing gap on some edge.
To prove the approximation ratio, we charge each guard
in S� to one of the guards in S. We prove that each
guard of S will have at most four guards of S� charged
to it. Since each guard of O has at most two guards of
S charged to it, we then have that each guard in O has
at most 10 guards of S ∪ S� charged to it, giving us the
approximation ratio.

171

CCCG 2017, Ottawa, Ontario, July 26–28, 2017

g�

g

a
b

Figure 6: Guard g does
not see b since the floor
is blocking it; {a, b} is
not completely seen.

gi
gi+1

gi+2

Figure 7: An example
of a middle pocket.

Suppose we have just added a guard g to S so as to
cover some vertices of the ceiling. Let E denote the
set of edges such that for every edge in the set, the
endpoints are seen by some guard in S but part of the
edge is unseen (see step 6 of Algorithm 2). We prove
that each edge e = {a, b} ∈ E will fall into one of the
four following cases, and each case is handled differently.
Case 1: g sees a and some guard in S sees b. a is
blocking g from b. We note in this case that no other
ceiling point can block g from b, see Figure 5.
Case 2: g sees a and some guard in S sees b. g does not
see b because the floor is blocking g from b, see Figure 6.
Case 3: g sees b and some guard in S sees a. g does
not see a because a is to the left of g.
Case 4: g sees b and some guard in S sees a. g does
not see a because the ceiling is blocking g from a.

Due to lack of space, we omit the proofs that these four
cases are exhaustive, and the algorithm places guards
into S� in a way so that every edge in E is completely
seen by S�. Moreover, we prove we can charge each
guard of S� to a guard of S such that any guard in S is
charged at most one guard for each of the four cases.
Now we have that each edge will be covered as soon

as S sees both endpoints of the edge. At the end of the
algorithm we have that every vertex on the ceiling is
seen by a guard in S, we will have that S ∪ S� covers
the entire ceiling. Each guard in S is charged at most
one guard in S� per case, and therefore |S�| ≤ 4|S|. We
already had that |S| ≤ 2|O|, and thus |S�| ≤ 8|O|. Our
final guarding set then satisfies |S ∪ S�| ≤ 10|O|. By
applying the algorithm on the ceiling and the floor, we
have a 20-approximation algorithm for guarding the
entire boundary of P .

Theorem 3 There is a polynomial-time 20-
approximation algorithm for point-guarding the
boundary of a monotone polygon with half-guards.

4 Guarding the Entire Polygon

Algorithm 2 ensures that the entire boundary of the
polygon is seen. It is possible that parts of the interior of
the polygon are unseen, see Figure 7. After Algorithm 2
is run, we run the final algorithm to ensure that the entire
polygon is guarded. In this algorithm, we let S denote all

Algorithm 2 Modified Ceiling Guard

1: S ← {s} such that s is placed at leftmost point l.
2: Let S� denote the initially empty set of “extra”

guards we add to cover edges.
3: while there exists an unseen point on the ceiling of

P from our guards in S do
4: Let p be the leftmost ceiling vertex that is cur-

rently unseen by any guards in S. Place a guard
g where lp intersects the floor. Slide g up until it
stops seeing some vertex v ∈ C(g) on the ceiling.
Place g at the point just before it stopped seeing v.
S ← S ∪ {g}.

5: Let o be the vertex to the left of p on the ceiling.
6: Let E be the set of ceiling edges such that for

every edge e = {a, b} ∈ E, g sees exactly one vertex
on the edge, S only sees the other vertex on the edge,
and S does not see the entire edge e.

7: if g sees some vertex a such that a is the leftmost
vertex of some edge in E then

8: Let ar be the rightmost a vertex that g sees,
such that a is the leftmost vertex of some edge e ∈ E.
Let br be vertex immediately to the right of ar on
the ceiling.

9: if a blocks g from br then � Case 1
10: Let gbr ∈ S be the leftmost guard that

sees br. Draw a line l from gbr to br and place a
guard g� at the point where l intersects lp. Remove
all edges in E that g� sees. S� ← S� ∪ {g�}.

11: end if
12: if the floor blocks g from br then � Case 2
13: Remove all edges in E that g� sees, and

place a guard g� at ar. S� ← S� ∪ {g�}.
14: end if
15: end if
16: if a part of ab is not seen by S then � Case 3
17: Remove {a, b} from E, and place a guard g�

at a. S� ← S� ∪ {g�}.
18: end if
19: while E is not empty do � Case 4
20: Remove e = {a, b} from E and place a guard

g� at a. S� ← S� ∪ {g�}.
21: end while
22: end while
23: return S ∪ S�.

guards returned by Algorithm 2. For any point p on the
boundary of P , we let p− denote a point on the boundary
to the left of p that is “infinitesimally close” to p. A
middle pocket is defined as an unseen part of the polygon
that is not touching the boundary of the polygon. See
Figure 7. The final algorithm will ensure that all middle
pockets are guarded. The algorithm processes S from
left to right and considers two consecutive guards. The
algorithm places a guard at a strategic location ensuring

172

29th Canadian Conference on Computational Geometry, 2017

that any part of the polygon that is unseen between the
consecutive guards is now seen. The following lemma is
proved in [15].

Lemma 4 Consider a middle pocket p of a partial guard
set S in a monotone polygon. Let r be the leftmost point
in p. Not all guards of S can be to the left of r.

Note that Lemma 4 is proved in [15] for guards that
see in all directions, but it also trivially applies to our
scenario since it deals with a region of P that lies entirely
to the right of a set of guards.

Lemma 5 Any middle pockets between 2 consecutive
guards can be guarded with 1 guard.

After the final algorithm terminates, the entire bound-
ary is seen and all middle pockets are guarded; thus
the entire polygon is seen. Note that each extra guard
that the final algorithm places can be charged to Si,
and therefore each guard output by Algorithm 2 will be
charged at most one guard placed by the final algorithm.
We have the following theorem.

Theorem 6 There is a 40-approximation algorithm for
point-guarding a monotone polygon with half-guards.

References

[1] Ahmed Abdelkader, Ahmed Saeed, Khaled A. Har-
ras, and Amr Mohamed. The inapproximability of
illuminating polygons by α-floodlights. In CCCG,
pages 287–295, 2015.

[2] Alok Aggarwal. The art gallery theorem: its vari-
ations, applications and algorithmic aspects. PhD
thesis, 1984.

[3] Greg Aloupis, Jean Cardinal, Sébastien Collette,
Stefan Langerman, David Orden, and Pedro Ramos.
Decomposition of multiple coverings into more parts.
In SODA, pages 302–310, 2009.

[4] Boris Aronov, Esther Ezra, and Micha Sharir. Small-
size epsilon-nets for axis-parallel rectangles and
boxes. SIAM J. Comp., 39(7):3248–3282, July 2010.

[5] M. Bellare, S. Goldwasser, C. Lund, and A. Rus-
sell. Efficient probabilistically checkable proofs and
applications to approximations. In STOC, pages
294–304, 1993.

[6] Björn Brodén, Mikael Hammar, and Bengt J. Nils-
son. Guarding lines and 2-link polygons is APX-
hard. In CCCG, pages 45–48, 2001.

[7] Ajay Deshpande, Taejung Kim, Erik D. Demaine,
and Sanjay E. Sarma. A pseudopolynomial time
O(log n)-approximation algorithm for art gallery
problems. In WADS, pages 163–174, 2007.

[8] Alon Efrat and Sariel Har-Peled. Guarding gal-
leries and terrains. Information Processing Letters,
100(6):238–245, 2006.

[9] Stephan Eidenbenz. Inapproximability results for
guarding polygons without holes. In ISAAC, pages
427–436, 1998.

[10] Uriel Feige, Magnús M. Halldórsson, Guy Kort-
sarz, and Aravind Srinivasan. Approximating the
domatic number. SIAM Journal on Computing,
32(1):172–195, 2003.

[11] Subir Kumar Ghosh. On recognizing and character-
izing visibility graphs of simple polygons. Discrete
& Computational Geometry, 17(2):143–162, 1997.

[12] David S. Johnson. Approximation algorithms for
combinatorial problems. STOC, pages 38–49. ACM,
1973.

[13] James King and David G. Kirkpatrick. Improved
approximation for guarding simple galleries from
the perimeter. Discrete & Computational Geometry,
46(2):252–269, 2011.

[14] Erik Krohn and Bengt J. Nilsson. The complexity
of guarding monotone polygons. In CCCG, pages
167–172, 2012.

[15] Erik Krohn and Bengt J. Nilsson. Approximate
guarding of monotone and rectilinear polygons. Al-
gorithmica, 66(3):564–594, 2013.

[16] D. T. Lee and A. K. Lin. Computational complex-
ity of art gallery problems. IEEE Trans. Inform.
Theory, 32(2):276–282, March 1986.

[17] Carsten Lund and Mihalis Yannakakis. On the
hardness of approximating minimization problems.
J. ACM, 41(5):960–981, September 1994.

[18] Ran Raz and Shmuel Safra. A sub-constant error-
probability low-degree test, and a sub-constant
error-probability PCP characterization of NP.
STOC, pages 475–484. ACM, 1997.

[19] Bettina Speckmann and Csaba D. Tóth. Allocat-
ing vertex π-guards in simple polygons via pseudo-
triangulations. Discrete & Computational Geometry,
33(2):345–364, 2005.

[20] Csaba D. Tóth. Art galleries with guards of uniform
range of vision. Computational Geometry, 21(3):185
– 192, 2002.

[21] Kasturi R. Varadarajan. Epsilon nets and union
complexity. In Symposium on Computational Ge-
ometry, pages 11–16, 2009.

173

