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On Guarding Orthogonal Polygons with Bounded Treewidth
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Abstract

There exist many variants of guarding an orthogonal
polygon in an orthogonal fashion: sometimes a guard
can see an entire rectangle, or along a staircase, or along
an orthogonal path with at most k bends. In this paper,
we study all these guarding models in the special case
of orthogonal polygons that have bounded treewidth
in some sense. Exploiting algorithms for graphs of
bounded treewidth, we show that the problem of finding
the minimum number of guards in these models becomes
linear-time solvable in polygons of bounded treewidth.

1 Introduction

In this paper, we study orthogonal variants of the well-
known art gallery problem. In the standard art gallery
problem, we are given a polygon P and we want to guard
P with the minimum number of point guards, where a
guard g sees a point p if the line segment gp lies en-
tirely inside P . This problem was introduced by Klee in
1973 [15] and has received much attention since. �n/3�
guards are always sufficient and sometimes necessary
[5], minimizing the number of guards is NP-hard on
arbitrary polygons [13], orthogonal polygons [16], and
even on simple monotone polygons [12]. The problem is
APX-hard on simple polygons [9] and several approxi-
mation algorithms have been developed [11, 12].

Since the problem is hard, attention has focused on re-
stricting the type of guards, their visibility or the shape
of the polygon. In this paper, we consider several models
of “orthogonal visibility”, and study orthogonal polygons
that have bounded treewidth in some sense. Treewidth
(defined in Section 2.1) is normally a parameter of a
graph, but we can define it for a polygon P as follows.
Obtain the standard pixelation of P by extending a hor-
izontal and a vertical ray inwards at every reflex ver-
tex until it hits the boundary of P (see Figure 1). We
can interpret this subdivision into rectangles as a planar
straight-line graph by placing a vertex at any place inci-
dent to at least two segments, and define the treewidth
of a polygon P to be the treewidth of the graph of the
standard pixelation.
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Figure 1: A polygon P with its standard pixelation
(black, solid) and its 1-refinement (red, dashed). The
gray area indicates a hole.

Motivation. One previously studied special case of the
art gallery problem concerns thin polygons, defined to
be orthogonal polygons for which every vertex of the
standard pixelation lies on the boundary of the polygon.
Thus a polygon is simple and thin if and only if the stan-
dard pixelation is an outer-planar graph. Tomás [17]
showed that the (non-orthogonal) art gallery problem is
NP-hard even for simple thin polygons if guards must
be at vertices of the polygon. Naturally one wonders
whether this NP-hardness can be transferred to orthog-
onal guarding models. This is not true, for example
r-guarding (defined below) is polynomial on polygons
whose standard pixelation is outer-planar, because it
is polynomial on any simple polygon [18]. But what
can be said about polygons that are “close” to being
thin? Since outer-planar graphs have treewidth 2, this
motivates the question of polygons where the standard
pixelation has bounded treewidth.

The goal of this paper is to solve orthogonal guard-
ing problems for polygons of bounded treewidth. There
are many variants of what “orthogonal guarding” might
mean; we list below the ones considered in this paper:

• Rectangle-guarding (r-guarding). A point guard
g r-guards a point p if the minimum axis-aligned
rectangle containing g and p is a subset of P .

• Staircase-guarding (s-guarding). A point guard g
s-guards any point p that can be reached from g by
a staircase, i.e., an orthogonal path inside P that
is both x-monotone and y-monotone.

• Periscope-guarding. A periscope guard g can see
all points p in which some orthogonal path inside
P connects g to p and has at most one bend.

A natural generalization of periscope-guards are k-
periscope guards in which a point guard g can see
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all points p that are connected via an orthogonal
path inside P with at most k bends. (In contrast to
s-guards, monotonicity of the path is not required.)

Another variant is to consider length rather than
number of bends. Thus, an L1-distance guard g (for
some fixed distance-bound D) can see all points p
for which some orthogonal path from g to p inside
P has length at most D1.

• Sliding cameras. Recently there has been much in-
terest in mobile guards, where a guard can walk
along a line segment inside polygon P , and can see
all points that it can see from some point along the
line segment. In an orthogonal setting, this type
of guards becomes a sliding camera, i.e., an axis-
aligned line segment s inside P that can see a point
p if the perpendicular from p onto s lies inside P .

Related results. In the full version of the paper, we
list (numerous) existing results about r-guarding, s-
guarding, periscope guarding and sliding cameras. In
a nutshell, most of these are NP-hard [4, 8, 10], and
some of them can be solved in polynomial time if P
has no holes [14, 18]. Of special relevance to the cur-
rent paper is that r-guarding and guarding with sliding
cameras can be solved in linear time for polygons with
bounded treewidth [3, 4].

Our results. The main goal of this paper is to solve the
s-guarding problem in polygons of bounded treewidth.
The method used in [3, 4] does not work for this since
s-guards can see along an infinite number of bends. In-
stead, we develop an entirely different approach. Note
that the above guarding-models (except r-guarding) are
defined as “there exists an orthogonal path from g to
p that satisfies some property”. One can argue (see
Lemma 1) that we may assume the path to run along
edges of the standard pixelation. The guarding prob-
lem then becomes the problem of reachability in a di-
rected graph derived from the standard pixelation. This
problem is polynomial in graphs of bounded treewidth,
and we hence can solve the guarding problem for s-
guards, k-periscope-guards, sliding cameras, and a spe-
cial case of L1-distance-guards, presuming the polygon
has bounded treewidth.

One crucial ingredient (similarly used in [3, 4]) is
that we can usually reduce the (infinite) set of possi-
ble guards to a finite set of “candidate guards”, and the
(infinite) set of points that need to be guarded to a
finite set of “watch points” while maintaining an equiv-
alent problem. This is not trivial (and in fact, false
for some guarding-types), and may be of independent

1We use “L1” to emphasize that this path must be orthogonal;
the concept would make sense for non-orthogonal paths but we
do not have any results for them.

interest since it does not require the polygon to have
bounded treewidth. We discuss this in Section 2.

To explain the construction for s-guarding, we first
solve (in Section 3.1) a subproblem in which an s-guard
can only see along a staircase in north-eastern direction.
We then combine four of the obtained constructions to
solve s-guarding (Section 3.2). In Section 4, we mod-
ify the construction to solve several other orthogonal
guarding variants. We conclude in Section 5.

2 Preliminaries

Throughout the paper, let P denote an orthogonal poly-
gon (possibly with holes) with n vertices. We already
defined α-guards (for α = r, s, periscope, etc.). The α-
guarding problem consists of finding the minimum set of
α-guards that can see all points in P . We solve a more
general problem that allows to restrict the set of guards
and points to be guarded. Thus, the (Γ, X)-α-guarding
problem, for some (possibly infinite) sets Γ ⊆ P and
X ⊆ P , consists of finding a minimum subset S of Γ
such that all points in X are α-guarded by some point
in S, or reporting that no such set exists. Note that
with this, we can for example restrict guards to be only
at polygon-vertices or at the polygon-boundary, if so de-
sired. The standard α-guarding problem is the same as
the (P, P )-α-guarding problem.

Recall that the standard pixelation of P is obtained by
extending a horizontal and a vertical ray inwards from
any reflex vertex until they hit the boundary. For the
rest of this paper, we refer to the standard pixelation
simply as the pixelation of P . The 1-refinement of the
pixelation of P is the result of partitioning every pixel
into four equal-sized rectangles. See Figure 1.

The pixelation of P can be seen as planar straight-
line graph, with vertices at pixel-corners and edges
along pixel-sides. For ease of notation we do not dis-
tinguish between the geometric construct (pixel/pixel-
corner/pixel-side) and its equivalent in the graph
(face/vertex/edge). To solve guarding problems, it usu-
ally suffices to study this graph due to the following
lemma whose proof is given in the full version of the
paper:

Lemma 1 Let P be a polygon with the pixelation Ψ.
Let π be an orthogonal path inside P that connects two
vertices g, p of Ψ. Then there exists a path π� from g to
p along edges of Ψ that satisfies

• π� is monotone if π was,
• π� has no more bends than π,
• π� is no longer than π.

2.1 Tree decompositions

A tree decomposition of a graph G is a tree I and an
assignment X : I → 2V (G) of bags to the nodes of I
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such that (i) for any vertex v of G, the bags containing
v form a connected subtree of I and (ii) for any edge
(v, w) of G, some bag contains both v and w. The width
of such a decomposition is maxX∈X |X| − 1, and the
treewidth tw(G) of G is the minimum width over all
tree decompositions of G.

We aim to prove results for polygons where the pix-
elation has bounded treewidth. Because we sometimes
use the 1-refinement of P instead, we need the follow-
ing observation, which holds since every pixel-corner in
a bag can be replaced by the 9 pixel-corners of the 1-
refinement that it shares a pixel with.

Observation 2.1 Let P be a polygon with the pixela-
tion Ψ of treewidth t. Then the 1-refinement of Ψ has
treewidth O(t).

The pixelation of an n-vertex polygon may well have
Ω(n2) vertices in general, but not for polygons of
bounded treewidth. The following lemma is proved in
the full version of the paper.

Lemma 2 Let P be a polygon with n vertices and
treewidth t. Then, the pixelation Ψ of P has O(3tn)
vertices.

The 1-refinement has asymptotically the same number
of vertices as the pixelation, hence it also has O(3tn)
vertices.

2.2 Reducing the problem size

In the standard guarding problem, guards can be at an
infinite number of points inside P , and we must guard
the infinite number of all points inside P . To reduce the
guarding problem to a graph problem, we must argue
that it suffices to consider a finite set of guards (we
call them candidate guards) and to check that a finite
set of points is guarded (we call them watch points).
Such reductions are known for r-guarding [4] and sliding
cameras [3]. Rather than re-proving it for each guarding
type individually, we give here a general condition under
which such a reduction is possible.

We need some notation. First, all our guarding mod-
els (with the exception of sliding cameras) use point
guards, i.e., guards are points that belong to P . Also,
all guarding models are symmetric, i.e., point g guards
point p if and only if p guards g. We say that two guard-
ing problems (Γ, X) and (Γ�, X �) are equivalent if given
the solution of one of them, we can obtain the solution
of the other one in linear time. We prove the following
lemma in the full version due to space constraints.

Lemma 3 Let P be an orthogonal polygon with the pix-
elation Ψ. Consider a guarding-model α that uses point
guards, is symmetric, and satisfies the following:
(a) For any pixel ψ and any point g ∈ P , if g α-guards

one point p in the interior of ψ, then it α-guards
all points in ψ.

(b) For any edge e of a pixel and any point g ∈ P , if
g α-guards one point p in the interior of e, then it
α-guards all points on e.

Then for any (possibly infinite) sets X,Γ ⊆ P there
exist (finite) sets X �,Γ� such that (Γ, X)-α-guarding and
(Γ�, X �)-α-guarding are equivalent. Moreover, X � and Γ�

consist of vertices of the 1-refinement of Ψ.

It is easy to see that the conditions of Lemma 3
are satisfied for r-guarding, s-guarding and k-periscope
guarding (for any k). We leave the details to the reader.

3 Algorithm for (Γ, X)-s-guarding

In this section, we give a linear-time algorithm for the
(Γ, X)-s-guarding problem on any orthogonal polygon
P with bounded treewidth. By Lemma 3, we may as-
sume that Γ and X consist of vertices of the 1-refinement
of the pixelation. As argued earlier, the 1-refinement
also has bounded treewidth. Thus, it suffices to solve
the (Γ, X)-s-guarding where Γ and X are vertices of the
pixelation Ψ that has bounded treewidth.

3.1 (Γ, X)-NE-Guarding

For ease of explanation, we first solve a special case
where guards can look in only two of the four directions
and then show how to generalize it to s-guarding. We
say that a point g NE-guards a point p if there exists
an orthogonal path π inside P from g to p that goes
alternately north and east ; we call π a NE-path. Define
NW-, SE- and SW-guarding analogously.

ψ

Figure 2: One pixel
needs many guards.

Note that NE-guarding does
not satisfy the conditions of
Lemma 3 because it is not
symmetric; see e.g. Figure 2,
where all crosses are needed to
NE-guard all circles. So, we
cannot solve the NE-guarding
problem in general, but we can
solve (X,Γ)-NE-guarding since
we already know that X and Γ
are vertices of the pixelation.

Constructing an auxiliary graph H. Define graph H
to be the graph of the pixelation of P and direct each
edge of H toward north or east; see Figure 3 for an
example. By assumption, X ⊆ V (H) and Γ ⊆ V (H).

By Lemma 1, there exists an NE-path from guard g ∈
Γ to point p ∈ X if and only if there exists one along
the pixelation-edges. With our choice of edge-directions
for H, hence there exists such a NE-path if and only if
there exists a directed path from g to p in H.

Thus, (Γ, X)-NE-guarding reduces to the following
problem which we call reachability-cover: Given a di-
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Figure 3: The graph H corresponding to NE-guarding
the polygon of Figure 1. Guards and points have been
shifted to pixelation-vertices.

rected graph G and vertex sets A and B, find a mini-
mum set S ⊆ A such that for any t ∈ B there exists
an s ∈ S with a directed path from s to t. (X,Γ)-NE-
guarding is equivalent to reachability-cover in graph H
using A := Γ and B := X.

Reachability-cover is NP-hard because set cover
can easily be expressed in it. We now argue that
reachability-cover can be solved in graphs of bounded
treewidth, by appealing to monadic second order logic
or MSOL (see [7] for an overview). Briefly, this means
that the desired graph property can be expressed as a
logical formula that may have quantifications, but only
on variables and sets. Courcelle’s theorem states that
any problem expressible in MSOL can be solved in linear
time on graphs of bounded treewidth [6]. (Courcelle’s
original result was only for decision problems, but it can
easily be generalized to minimization problems.) Define
Reachability(u, v,G) to be the property that there ex-
ists a directed path from u to v in a directed graph G.
This can be expressed in MSOL [7]. Consequently, the
(Γ, X)-NE-guarding problem can be expressed in MSOL
as follows:

∃S ⊆ Γ : ∀p ∈ X : ∃g ∈ S : Reachability(g, p,H).

So we can solve the (Γ, X)-NE-guarding problem if Γ and
X are vertices of a given pixelation that has bounded
treewidth.

3.2 (Γ, X)-s-guarding

Solving the (Γ, X)-s-guarding problem now becomes
very simple, by exploiting that a guard g s-guards a
point p if only if g β-guards p for some β ∈{NE, NW, SE,
SW}. We can solve the (Γ, X)-β-guarding problem for
β �= NE similarly as in the previous section, by directing
the auxiliary graph H according to the directions we
wish to take. Let HNE, HNW, HSE, HSW be the four copies
of graph H (directed in four different ways) that we get.
Define a new auxiliary graph H∗ as follows (see also Fig-
ure 4): Initially, let H∗ := HNE ∪HNW ∪HSE ∪HSW. For
each g ∈ Γ, add to H∗ a new vertex vΓ(g) and the di-
rected edges (vΓ(g), vβ(g)) where vβ(g) (for β ∈{NE, NW,

vΓ(g2)

vX(p2)

HNW

HNE

HSE

HSW

vX(p1)

vΓ(g1)

p1 g2

g1 p2

p1 g2

g1 p2

p1

g2

g1 p2

p1 g2

g1 p2

Figure 4: The construction of graph H∗.

SE, SW}) is the vertex in Hβ) corresponding to g. Sim-
ilarly, for each p ∈ X, add to H∗ a new vertex vX(p)
and the directed edges (vβ(p), v

X(p)) for β ∈{NE, NW,
SE, SW}).

If some guard g s-guards a point p, then there exists
a β-path from g to p inside P for some β ∈{NE, NW,
SE, SW}. We can turn this path into a β-path along
pixelation-edges by Lemma 1, and therefore find a path
from vΓ(g) to vX(p) by going to Hβ and following the
path within it. Vice versa, any directed path from vΓ(g)
to vX(p) must stay inside Hβ for some β ∈{NE, NW,
SE, SW} since vΓ(g) is a source and vX(p) is a sink.
Therefore (Γ, X)-s-guarding is the same as reachability-
cover in H∗ with respect to the sets V (Γ) := {vΓ(g) :
g ∈ Γ} and V (X) := {vX(p) : p ∈ X}.

It is easy to see that H∗ has bounded treewidth if Ψ
does, by replacing each vertex p of Ψ in a bag by its
up to six copies vβ(p), vX(p), vΓ(p). Now we put it all
together. Assume P has bounded treewidth, hence its
(standard) pixelation has bounded treewidth and O(n)
edges, and so does its 1-refinement. This is in fact the
partition of P that we use to obtain H∗, therefore H∗

also has bounded treewidth and O(n) edges. We can
apply Courcelle’s theorem to solve reachability-cover in
H∗ and obtain:

Theorem 4 Let P be an orthogonal polygon with
bounded treewidth. Then, there exists a linear-time al-
gorithm for the (Γ, X)-s-guarding problem on P .

4 Other Guarding Types

In this section, we show how similar methods apply
to other types of orthogonal guarding. The main dif-
ference is that we need edge-weights on the auxiliary
graph. To solve the guarding problem, we hence use
a version of reachability-cover defined as follows. The
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(G,A,B,W )-bounded-reachability-cover problem has as
input an edge-weighted directed graph G, two vertex
sets A and B, and a length-bound W . The objective
is to find a minimum-cardinality set S ⊆ A such that
for any t ∈ B there exists an s ∈ S with a directed
path from s to t that has length at most W . We need
to argue that this problem is solvable if G has bounded
treewidth, at least if W is sufficiently small. Recall that
reachability-cover can be expressed in monadic second-
order logic. Arnborg et al. [1] introduced the class of
extended monadic second-order problems which allow
integer weights on the input. They showed that prob-
lems expressible in extended monadic second-order logic
can be solved on graphs of bounded treewidth, with a
run-time that is polynomial in the graph-size and the
maximum weight.

4.1 L1-distance guarding

We first study the L1-distance guarding problem. We
have not been able to solve the L1-distance guarding
problem for all polygons of bounded treewidth. The
main problem is that the bounded-reachability-cover
problem is solved in run-time that depends on the maxi-
mum weight. For this to be polynomial, we must assume
that all edges of the input-polygon have integer length
that is polynomial in n.

Let Γ and X be subsets of the vertices of the pix-
elation Ψ of P . Let Hdist be the auxiliary graph ob-
tained from the pixelation graph by making all edges
bi-directional. Set the weight of each edge to be its
length. If a guard g ∈ Γ sees a point p ∈ X in the
L1-distance guarding model (with distance-bound D),
then there exists a path π from g to p that has length
at most D. By Lemma 1, we may assume that π runs
along pixel-edges. Hence π gives rise to a directed path
in Hdist of length less than D. Vice versa, any such path
in Hdist means that g can L1-distance-guard p. In conse-
quence, the (Γ, X)-L1-distance guarding problem is the
same as the (Γ, X,Hdist, D)-bounded-reachability-cover
problem. This can be solved in polynomial time, pre-
suming the pixelation has bounded treewidth and O(n)
edges and the lengths of all edges of P are integers that
are polynomial in n.

4.2 k-periscope guarding

For k-periscope guarding, we define an auxiliary graph
Hperi based on the graph of the pixelation, but modify
it near each vertex and add weights to encode the num-
ber of bends, rather than the length, of a path. If u is
a vertex of the pixelation, then replace it with a K4 as
shown in Figure 5. We denote this copy of K4 by Ku

4 ,
and let its four vertices be uN , uS , uW and uE according
to compass directions. For a vertex u on the boundary
of P we omit those vertices in Ku

4 that would fall out-

side P . We connect copies Ku
4 and Kv

4 of a pixel-edge
(u, v) in the natural way, e.g. if (u, v) was vertical with
u below v, then we connect uN to vS . All edges are
bidirectional.

0
0

uW

1
uS

1
uN

1
uE

1

u

Figure 5: Adding
K4.

For any g ∈ Γ, define a new
vertex vΓ(g) and add edges
from it to all of gN , gS , gE , gW
that exist in the graph. For
any p ∈ X, define a new ver-
tex vX(p) and add edges from
all of pN , pS , pE , pW to vX(p).
Set all edge weights to 0, ex-
cept for the “diagonal” edges
between consecutive vertices of
a K4, which have weight 1 as
shown in Figure 5.

Clearly, g ∈ Γ can see p ∈
X (in the k-periscope guarding
model) if and only if there is a directed path from vΓ(g)
to vX(p) in the constructed graph that uses at most k
diagonal edges, i.e., that has length at most k. Thus
the k-periscope guarding model reduces to bounded-
reachability-cover. Since k-periscope-guarding satisfies
the conditions for Lemma 3, we can hence solve the k-
periscope guarding problem in polynomial time in any
polygon of bounded treewidth. Note that the run-time
depends polynomially on k, so k need not be a constant.

4.3 Sliding cameras

It was already known that the sliding camera problem is
polynomial in polygons of bounded treewidth [3]. How-
ever, using much the same auxiliary graph as in the
previous subsection we can get a second (and in our
opinion, easier) method of obtaining this result.

We solve the (Γ, X)-sliding camera guarding problem,
for some set of sliding cameras Γ (which are segments
inside P ) and watch points X. It was argued in [3] that
we may assume Γ to be a finite set of maximal segments
that lie along the pixelation; in particular the endpoints
of candidate guards are pixel-vertices. As for X, we can-
not apply Lemma 3 directly, since sliding cameras are
not point guards and hence not symmetric. But sliding
cameras do satisfy conditions (a) and (b) of Lemma 3.
As one can easily verify by following the proof, we may
therefore assume X to consist of pixel-vertices of the
1-refinement. (A similar result was also argued in [3].)

We build an auxiliary graph Hslide almost exactly as
in the previous subsection. Thus, start with the graph
of the 1-refinement of the pixelation. Replace every ver-
tex by a K4, weighted as before. (All other edges receive
weight 0.) For each p ∈ X, define a new vertex vX(p)
and connect it as in the previous subsection, i.e., add
edges from pN , pE , pW , pS to vX(p). For any sliding
camera γ ∈ Γ, add a new vertex vΓ(γ). The only new
thing is how these vertices get connected. If γ is hori-
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zontal, then add an edge from vΓ(γ) to gW , where gW
is the left endpoint of γ. If γ is vertical, then add an
edge from vΓ(γ) to gN , where gN is the top endpoint of
γ.

It is not hard to verify that a sliding camera γ can
see a point p if and only if there exists a directed path
from vΓ(γ) to vX(p) in Hslide that has length at most 1.
Due to space constraints, we prove this formally in the
full version of the paper. Therefore the sliding camera
problem reduces to a bounded-reachability-cover prob-
lem where all weights are at most 1; this can be solved
in polynomial (in fact, linear) time if the polygon has
bounded treewidth.

5 Conclusion

In this paper, we gave algorithms for guarding orthog-
onal polygons of bounded treewidth. We considered
various models of orthogonal guarding, and solved the
guarding problem on such polygons for s-guards, k-
periscope guards, and sliding cameras, and some other
related guarding types.

As for open problems, the main question is whether
these results could be used to obtain better approxima-
tion algorithms. Baker’s method [2] yields a PTAS for
many problems in planar graphs by splitting the graph
into graphs of bounded treewidth and combining solu-
tions suitably. However, this requires the problems to
be “local” in some sense, and the guarding problems
considered here are not local in that a guard may see
a point whose distance in the graph of the pixelation is
very far, which seems to make Baker’s approach infeasi-
ble. Are these guarding problems APX-hard in polygons
with holes?
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