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Dominating Set of Rectangles Intersecting a Straight Line

Supantha Pandit∗

Abstract

We study the dominating set problem using axis-
parallel rectangles and unit squares on the plane.
These geometric objects are constrained to be inter-
sected by a straight line which makes an angle with
the x-axis. For axis-parallel rectangles, we prove that
this problem is NP-complete. When the objects are
axis-parallel unit square, we give a polynomial time
algorithm. For unit squares which touch the straight
line at a single point from either side of the straight
line, we give an O(n log n) time algorithm.

Keywords: Dominating set, Straight line, Rectan-
gles, Squares, NP-complete, Inclined line, Diagonal line,
Touching a line, Intersecting a line.

1 Introduction

Dominating Set (DS) problem is a fundamental
problem and has applications in diverse setting. This
problem is defined as follows. Given a set O of objects,
the objective is to find a subset O� ⊆ O of objects such
that every object in O is either in O� or has a non-
empty intersection with an object in O�. This problem
is known to be NP-complete even with simple geometric
objects like squares, disks, etc. There are many appli-
cations where minimum dominating set plays a crucial
role, one of them being network routing [17]. In this
work, we are interested in a special case of the DS prob-
lem where the given input objects are forced to intersect
a given line which makes an angle with the x-axis. We
define this problem formally as follows.

Dominating Set Problem with Objects Inter-
secting a Straight Line: Given a set of objects
O and a straight line L such that the objects are
intersecting the line L. The objective is to find a
minimum cardinality subset O� ⊆ O of objects such
that any object in O is either belongs to O� or it
has a non-empty intersection with an object in O�.
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We are looking at this problem when the objects are
axis-parallel rectangles and unit squares in the plane.
Further, we assume that the rectangles or squares are
either intersecting or touching L. Here, we assume
that L makes an angle 135◦ with the x-axis. A set of
rectangles is intersecting L if all the rectangles have a
non-empty intersection with L (see Figure 1(a)). A set
of rectangles is touching L if all the rectangles intersect
L only at a corner point and this rectangles lie on the
same side of L (see Figure 1(b)). Similarly, we define
this two types of intersections for unit squares. In this
paper, we consider the following three problems.

• DS-Rec-IL: Dominating set problem with rect-
angles intersecting a straight line.

• DS-Sq-IL: Dominating set problem with unit
squares intersecting a straight line.

• DS-Sq-TL: Dominating set problem with unit
squares touching a straight line.

(a) (b)

Figure 1: (a) A set of rectangles intersecting a straight
line. (b) A set of unit squares touching a straight line.

1.1 Previous Work

The minimum dominating set problem is NP-complete
for general graphs [6]. Further, it is (1 − �) log n hard
to approximate this problem for any � > 0 under stan-
dard complexity theoretic assumptions [19, 5, 2, 11].
There exists a greedy algorithm which produces an
O(log n) approximation [20] for this problem. Domi-
nating set problem with different classes of graphs like
unit disk graphs, growth bounded graphs [10, 17] are
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also studied in the literature. For graphs with polyno-
mially bounded expansion, Har-Peled and Quanrud [9]
designed a PTAS using local search algorithm. Gibson
and Pirwani [8] designed a PTAS for arbitrary disks.
For the intersection graphs of axis-parallel rectangles,
ellipses, α-fat objects of constant description complex-
ity, and of convex polygons with r-corners (r ≥ 4),
Erlebach and van Leeuwen [4] proved that the dom-
inating set problem is APX-hard. This implies that,
there is no PTAS for these problems unless P=NP. In
[14], Marx proved that the problem is W[1]-hard for
unit squares, which implies that no efficient-polynomial-
time-approximation-scheme (EPTAS) is possible unless
FPT = W[1] [15]. Erlebach and van Leeuwen [4] gave
a O(k), where k > 0, factor approximation factor for
homothetic 2k-regular polygons. They also provided
an O(k2) factor approximation result for homothetic
(2k + 1)-regular polygons. For the homothetic convex
polygons where each polygons has k-corners, the best
known result is O(k4)-approximation.
Chepoi and Felsner [1] considered the independent set
and piercing set problems with rectangles where the
rectangles are intersecting an axis-monotone curve. Re-
cently, Correa et al. [3] studied the same problem, how-
ever instead of axes-monotone curve they considered a
diagonal line. In [16] Their results were extended. Fur-
ther, in [16], the authors considered the set cover and
hitting set problems with other geometric objects as
well.

1.2 Our Contributions

We list our contributions as follows.

• DS-Rec-IL problem is NP-complete. (Section 2)

• DS-Sq-IL problem can be solved in polynomial
time. (Section 3)

• DS-Sq-TL problem can be solved in O(n log n)
time. (Section 4)

1.3 Prerequisites

In this section, we provide some definitions and prereq-
uisites that are used in the subsequent sections. We
define 3-SAT problem as follows. Given a 3-CNF for-
mula F with n variables x1, x2, . . . , xn and m clauses
C1, C2, . . . , Cm, where each clause contains exactly 3 lit-
erals, the goal is to find a truth assignment to the vari-
ables such that F is satisfied. This problem is known
to be NP-complete [7]. We now embed the 3-CNF for-
mula F in the plane as follows. For each variable or
clause take a vertex in the plane. A literal is present
in a clause iff their is an edge from the corresponding

variable to that clause. The goal is now to find a sat-
isfying assignment of F . This is planar 3-SAT (P-3-
SAT) problem and Lichtenstein [13] proved that this
problem is NP-complete. A further variation of P-3-
SAT problem is the rectilinear planar 3-SAT (R-
P-3-SAT) problem which is defined as follows. For
each variable or clause we take a horizontal line seg-
ment. The variable segments are placed on a horizontal
line and clause segments are connected to these variable
segments either from above or below by vertical line seg-
ments called connections such that none of these line
segments and connections intersect. The goal is to find a
satisfying assignment of F . See Figure 2 for an instance
of R-P-3-SAT problem. Knuth and Raghunathan [12]
proved that R-P-3-SAT problem is NP-complete. Ob-
serve that the variable segments are ordered in the in-
creasing x direction. Let Ct = (xi ∨xj ∨xk) be a clause
where xi, xj , xk are in increasing order. Then we say
that, xi is the left variable, xj is the middle variable,
xi is the right variable.

Figure 2: An instance of R-P-3-SAT problem. Solid
(resp. dotted) clause vertical segments represent that
the variable is positively (resp. negatively) present in
the corresponding clauses.

Let us now consider the graph G given in Figure 3. The
following claim can be easily proved.

Claim 1 There are exactly two optimal dominat-
ing sets, D0 = {v4, v8, . . . , v8τ} and D1 =
{v2, v6, . . . , v8τ−2} of vertices each with cost exactly 2τ
for graph G.

Proof. We already know that D0 and D1 are dominat-
ing sets. Thus the size of a minimum dominating set
is atmost 2τ . In a triangle, e.g., vertices v2, v3, v4, to
dominate v3 we should choose one of the vertices v2, v3,
and v4. Since there are 2τ such triangles and they are
separated by a degree 2 vertex, the size of the minimum
dominating set is at least 2τ and thus D0 and D1 are
minimum dominating sets. Around a degree 2 vertex
with non-adjacent neighbours, e.g., vertices v4, v5, v6,
we should choose one of the vertices v4, v5, and v6. This
means that we cannot choose any degree 2 vertex in a
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minimum dominating set, and D0 and D1 are the only
minimum dominating sets. �

Figure 3: The graph G.

2 Intersecting Rectangles

In this section, we prove that DS-Rec-IL problem is
NP-complete by giving a reduction from the R-P-3-
SAT problem. We first modify R-P-3-SAT problem
as follows. Instead of placing the variables on a hori-
zontal line, place them on a diagonal line. Modify the
clause vertical connections as follows (see Figure 4). For
clauses which connect to the variables from above, re-
move the clause vertical connection for its left variable
and directly connect the clause horizontal segments to
the corresponding variables. To distinguish between the
negative and positive connections we assume that at
the meeting point of this clause horizontal segment and
variable segment there is a spare vertical connections.
Similar construction can be done for clauses which con-
nect to the variables from below. Now we describe the
reduction as follows.

Reduction: Given an R-P-3-SAT instance, we denote
α to be the maximum number of clause vertical seg-
ments that connect to a single variable segment via con-
nections either from above or below. For each variable
xi, we take 8α rectangles (4 rectangles are considered for
each clause vertical connection) Ri = {ri1, ri2, . . . , ri8α}
as shown in Figure 5. The 4α rectangles {ri1, ri2, . . . , ri4α}
are above and the 4α rectangles {ri4α+1, r

i
4α+2, . . . , r

i
8α}

are below the line L. Note that, here we encode the
graph in Figure 3 as a variable gadget of DS-Rec-
IL with τ = α where vertices represent the rectan-
gles and there is an edge between two vertices if the
two rectangles corresponding to these two vertices in-
tersect. Therefore, by Claim 1 we conclude that for
each variable gadget there are exactly two optimal dom-
inating set of rectangles R1

i = {ri2, ri6, . . . , ri8α−2} and
R0

i = {ri4, ri8, . . . , ri8α} each with cost 2α. The rest of

Figure 4: Modified R-P-3-SAT problem instance of the
R-P-3-SAT problem instance in Figure 2.

the construction for the clauses connecting to the vari-
ables from above is similar for clauses connecting to the
variables from below. Therefore, here we only describe
the construction for clauses connecting to the variables
from above.

Figure 5: Structure of a variable gadget.

For each clause Ct, we take a thin rectangles rt (see Fig-
ure 6). The bottom boundary of rt are on the horizontal
segment of Ct. We now describe how the rectangle rt

interact with the variable rectangles.
For each variable xi, 1 ≤ i ≤ n, sort the vertical connec-
tions from left to right which connect to xi from clauses
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connecting from above. Let clause Ct connects to xi

through the lj-th connection, then we say that Ct is the
lj-th clause for variable xi.
Let us assume that, Ct contains three variables xi, xj ,
and xk in this order.

• Here xi is a left variable in the clause Ct and Ct

is the l1-th clause for xi. If xi occurs as a positive
literal in Ct, then rt will intersect with the rectangle
ri4l1+4 only. Otherwise, rt will intersect with the
rectangle ri4l1+2 only.

• Here xj is a middle variable in the clause Ct and Ct

is the l2-th clause for xj . If xj occurs as a positive
literal in Ct, then we extend the rectangle rj4l2+4

upward such that it will intersect with the rectangle
rt. Otherwise, extend the rectangle rj4l2+2 upward.

• Here xk is a right variable in the clause Ct and Ct

is the l3-th clause for xk. If xk occurs as a positive
literal in Ct, then we extend the rectangle rk4l3+4

upward such that it will intersect with the rectangle
rt. Otherwise, extend the rectangle rk4l3+2 upward.

Figure 6: Clause gadget for the clause Ct = (xi∨xj∨xk)
and connection with the variable gadgets of xi, xj , xk.

See Figure 6 for the above construction. Thus, from an
instance F of the R-P-3-SAT problem, we created an
instance D of the DS-Rec-IL problem. It is observe
that the number of rectangles in D are 8αn+m which
is polynomial with respect to the number of variables
n and clauses m of the formula F . Hence, this con-
struction can be performed in polynomial time. The
correctness of the above construction is shown in fol-
lowing lemma.

Lemma 1 Formula F is satisfiable iff D has a solution
with cost at most 2αn.

Proof. Assume that F is satisfiable and let A :
{x1, x2, . . . , xn} → {true, false} be a satisfying assign-
ment. For the i-th variable gadget, take the solution R0

i

if A(xi) = true and R1
i if A(xi) = false. We choose a

total of 2αn rectangles and these rectangles dominates
all the variable and clause rectangles.
On the other hand, suppose that there is a solution to D
with cost at most 2αn. To dominate all the rectangles
in a variable gadget requires at least 2α rectangles (see
Claim 1). Note that all the variable gadgets are disjoint.
Therefore, from each variable gadget we must choose
exactly 2α rectangles (either set R0

i or set R1
i ). We now

show that D contains no rectangle rt corresponding to
the clause Ct. Assume that rt ∈ D . Let Ct contains the
variable xi. From the construction described above we
say that rt dominates a single vertex from the variable
gadget of xi and to dominate the remaining vertices
from this gadget at least 2α rectangles are required.
We now set the variable xi to true if R0

i is chosen from
its variable gadget, otherwise set it to false. Since the
solution dominates all the clause rectangles, hence by
the construction we say that each clause is satisfied by
this assignment. Therefore, the above assignment is a
satisfying assignment. �

Clearly, DS-Rec-IL problem is in NP. Further, from
Lemma 1, we conclude the following theorem.

Theorem 2 DS-Rec-IL problem is NP-complete.

Remark 1 We prove that DS-Rec-IL problem is NP-
complete even when each of the rectangles touches the
straight line L at a single point from both sides of L.

3 Intersecting Unit Squares

In this section, we show that DS-Sq-IL problem can be
solved in polynomial time using dynamic programming.
Let S = {s1, s2, · · · , sn} be a set of n axis-parallel unit
squares on the plane. The squares are intersecting a
straight line L. We first rotate the given input configu-
ration to make the straight line L parallel to the x-axis.
Consider a horizontal strip T of height

√
2 such that

the line L horizontally divides T into two equal parts
above and below the line L. Since the squares are in-
tersecting the line L, the center of all the squares in
S are inside the strip T . The strip T is further parti-
tioned into rectangles of width

√
2 and height

√
2. We

remove all the rectangles that do not have any intersec-
tion with the given input squares. Clearly, there are at
most 2n such rectangles that remain after the removal,
since each square can intersect at most 2 rectangles.
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Let T1, T2, . . . , Tk be these rectangles which are ordered
from left to right. Add two additional rectangles T0 and
Tk+1 such that, (i) T0 is to the left of T1, (ii) Tk+1 is to
the right of Tk, and (iii) no square in S intersects either
T0 or Tk+1.
Let Si ⊆ S be the set of squares which intersect the
rectangle Ti. Further, let Sc

i ⊆ Si be the set of squares
whose centers are inside Ti and Snc

i ⊆ Si be the set
of squares whose centers are outside Ti (see Figure 6).
Clearly, Snc

i = Si \ Sc
i . More precisely, Snc

i ⊆ Sc
i−1 ∪

Sc
i+1. We now prove the following result.

Figure 7: Sc
i = {s2, s3, s4} and Snc

i = {s1, s5}.

Lemma 3 The size of the optimal dominating set of
squares for Si is at most 12.

Proof. We first prove that, at most 4 unit squares are
sufficient to dominate all the squares in Sc

i . Observe
that, both the width and height of the rectangle Ti are√
2. Take 4 congruent squares T 1

i , T
2
i , T

3
i , T

4
i such that

each T j
i , for 1 ≤ j ≤ 4, is of length 1√

2
. If we arrange

these 4 squares such that exactly 2 squares are in a
column and exactly 2 squares are in a row, then their
union fully cover the rectangle Ti. The center cji of T j

i

is at most 1
2 unit far from any other point inside T j

i

and hence at most one square with center inside T j
i will

dominate all the squares whose centers are inside T j
i .

Thus, any dominating set for the squares in Sc
i has size

at most 4.
Observe that, the centers of the squares in Si whose
centers are outside Ti must belongs to Ti−1 and Ti+1.
This implies that, Snc

i ⊆ Sc
i−1 ∪ Sc

i+1. Therefore, by
the above argument we say that, the squares in Si can
be dominated by at most 12 squares, 4 squares each
from rectangles Ti−1, Ti, and Ti+1. Since the squares
whose center are inside Ti can only dominate a subset of
squares in Si, if an optimal solution OPT contains more
than 12 square whose center are inside the rectangle Ti,
we can replace them by 12 squares whose centers are
in rectangles Ti−1, Ti, Ti+1 without leaving any square
to be dominated. This contradicts the assumption that
OPT was an optimal dominating set. �

For 0 ≤ i ≤ k + 1, let D(S�
i, S

�
i−1) where S�

i ⊆ Si and
S�
i−1 ⊆ Si−1 denote the size of an optimal dominating

set δ for the squares which lie completely inside ∪i
j=0Tj

such that δ∩Si = S�
i and δ∩Si−1 = S�

i−1. Note that by
Lemma 3, we can assume that both S�

i and S�
i−1 have

at most 24 squares. D(S�
i, S

�
i−1) satisfies the following

recurrence:

• If S�
i∪S�

i−1 does not dominate all squares which lie
completely inside Ti ∪Ti−1, then D(S�

i, S
�
i−1) = ∞.

• Otherwise,

D(S�
i, S

�
i−1) = min

S�
i−2⊆Si−2,

|S�
i−2|≤12

D(S�
i−1, S

�
i−2) + |S�

i|

We calculate the minimum dominating set by evaluat-
ing the function D(S�

k+1, S
�
k).

Running Time: We now calculate the time required
to compute the optimal dominating set. There are at
most O(n24) subproblems and each subproblem depends
on O(n12) smaller subproblems. Hence, the total time
required is nO(1).
Therefore, we have the following theorem.

Theorem 4 DS-Sq-IL Problem can be solved in poly-
nomial time.

4 Touching Unit Squares

In this section, we prove that DS-Sq-TL problem can
be solved in O(n log n) time. We reduce this problem
to the minimum dominating set problem with uniform
intervals (all intervals have same length) on real line.
Let S = {s1, s2, . . . , sn} be a set of axis-parallel unit
squares. The squares touches a straight line L from
above (see Figure 1(b)). Observe that, all the centers of
the squares are on a straight line parallel to the line L.
We move the line L to a position L� in the orthogonal
direction of L until it passes through all the centers of
all the squares in S (see Figure 8(a)).
We create an instance I of the minimum dominating
set problem with uniform intervals on real line from an
instance of DS-Sq-TL problem as follows. Let s ∈ S
be a square touching the line L from above. We take an
interval is ∈ I as the intersection of the square s and the
line L� (see Figure 8(b)). It is easy to observe that, two
square s1 and s2 intersect if and only if the correspond-
ing two intervals is1 and is2 of s1 and s2 respectively
intersect.
We now solve the minimum dominating set problem on
I. Let {is1 , is2 , . . . , isk} be the set of intervals returned
by the algorithm. We return the squares {s1, s2, . . . , sk}
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(a) (b)

Figure 8: (a) Moving straight line L to L�. (b) A square
s and its corresponding interval is.

as a solution of the DS-Sq-TL problem. The time re-
quired to solve the minimum dominating set problem
is O(n log n) (greedy algorithm is enough, however one
can look at [18]). Hence, we have the following theorem.

Theorem 5 The DS-Sq-TL problem can be solved in
O(n log n) time.
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