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Packing Boundary-Anchored Rectangles
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Abstract

In this paper, we study the boundary-anchored rectangle
packing problem in which we are given a set P of points
on the boundary of an axis-aligned squareQ. The goal is
to find a set of disjoint axis-aligned rectangles in Q such
that each rectangle is anchored at some point in P , each
point in P is used to anchor at most one rectangle, and
the total area of the rectangles is maximized. We show
how to solve this problem in linear-time in the number
of points of P , provided that the points of P are given in
sorted order along the boundary of Q. The solvability of
the general version of this problem, in which the points
of P can also lie in the interior of Q, in polynomial time,
is still open.

1 Introduction

Let Q be an axis-aligned square in the plane and P be
a set of points in Q. Call a rectangle r anchored at a
point p ∈ P if p is a corner of r. The anchored rectangle
packing (ARP) problem is to find a set S of disjoint axis-
aligned rectangles in Q such that each rectangle in S is
anchored at some point in P , each point in P is a corner
of at most one rectangle in S, and the total area of the
rectangles in S is maximized; see Figure 1(a). It is not
known whether or not this problem is NP-hard. The
best known approximation algorithm for this problem,
which achieves ratio 7/12− ε, is due to Balas et al. [1].
They also studied several variants of this problem.

In this paper, we study a simpler variant of the an-
chored rectangle packing problem in which all the points
of P lie on the boundary ofQ. We refer to this variant as
the boundary-anchored rectangle packing (BARP) prob-
lem; see Figure 1(b). We present a simple algorithm
that solves the BARP problem in linear time, provided
that the points of P are given in sorted order along
the boundary of Q. Despite the simplicity of our algo-
rithm, its correctness proof is non-trivial. We present
our algorithm in Section 3, and prove its correctness in
Section 4.
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Figure 1: Instances of (a) the ARP problem, and (b)
the BARP problem.

Related results. The rectangle packing problem is re-
lated to strip packing and bin packing problems, which
are well-known optimization problems in computational
geometry. Rectangle packing problems have applica-
tions in map labelling [4, 7]. Balas et al. [1] studied
several variants of the anchored rectangle packing prob-
lem, namely, the lower-left anchored rectangle packing
problem in which points of P are required to be on the
lower-left corners of the rectangles in R, the anchored
square packing problem in which every anchored rect-
angles is required to be a square, and the lower-left an-
chored square packing problem which is a combination
the two previous problems. For the lower-left rectangle
packing problem, Freedman [6] conjectured that there
is a solution that covers 50% of the area of Q. The best
known lower bound of 9.1% of the area of Q is due to
Dumitrescu and Tóth [3]. Balas et al. [1] presented ap-
proximation algorithms with ratios (7/12− ε) and 5/32
for anchored rectangles and anchored square, respec-
tively. They also presented a 1/3-approximation algo-
rithm for the lower-left anchored square packing prob-
lem, and proved that this lower bound is tight. Balas
and Tóth [2] studied the combinatorial structure of
maximal anchored rectangle packings and showed that
the number of such distinct packings with the maximum
area can be exponential in the number n of points of P ;
they give an exponential upper bound of 2nCn, where
Cn denotes the nth Catalan number.
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Figure 2: BARP can be solved via maximum-weight
independent set in an outer-string graph.

2 An outline

We first briefly argue that BARP is sovable in polyno-
mial time. It is easy to see [1] that in any rectangle pack-
ing the boundaries of rectangles must lie on the grid Λ
obtained by extending rays inwards from all points until
they hit the opposite boundary. For each point p ∈ P ,
there are O(n2) potential rectangles of Λ anchored at p
and so we have O(n3) candidate rectangles, of which we
must pick an independent set (among their intersection
graph) such that the sum of the weights (defined to be
the area of each rectangle) is maximized. If all points are
on the boundary, then it is easy to represent each rectan-
gle as a string (i.e., a Jordan curve) such that all strings
have a point on the infinite face and two strings inter-
sect if and only if not both rectangles should be taken,
see Figure 2. It is known that maximum-weighted inde-
pendent set is solvable in O(N3) time on an outer-string
graph with a geometric representation of O(N) [5]. As
such, BARP is solvable in O(n9) time, but this is rather
slow.

In this section, we give key insights that lead to faster
algorithms. Define a cell to be a maximal rectangle
not intersected by lines of grid Λ. Given an optimum
solution S, define a hole of S to be a maximal connected
region of Q that is not covered by S, see Figure 3(b).
We show the following in Section 4:

Insight 1 An optimal solution S either covers all of Q,
or it has exactly one hole which is a single cell.

It is quite easy to test whether all of Q can be covered
(see Lemma 10). If this is not possible, then we want
to minimize the hole. However, there are a quadratic
number of cells, and more crucially, not all cells are
feasible (i.e., can be holes in a packing). The second
key result is therefore the following (by Theorem 2):

Lemma 1 For any cell ψ, we can test in O(1) time
whether some packing covers Q− ψ.

This immediately gives an O(n2 log n) algorithm to
find the best solution of type Q − ψ: sort the cells by
increasing area, and test for each of them whether it is
feasible until we succeed. However, it is not necessary

to test each cell individually. We can characterize ex-
actly when a cell ψ is feasible, based solely on where
the supporting lines of ψ (which are either the bound-
ary of Q or rays emanating from some points) have their
endpoints. Hence we need not look at individual cells,
only at the list of points on the four sides, to find the
minimum area hole.

3 A Linear-Time Algorithm

Before stating this characterization, we need a few defi-
nitions. We write PB/PL/PT /PR for the points of P
on the bottom/left/top/right side. For a point p in
the plane, we denote by x(p) and y(p) the x- and y-
coordinates of p, respectively. The following theorem
proved in Section 4 characterizes possible optimal solu-
tions; Figure 7 on page 5 illustrates these configurations.

Theorem 2 Any BARP instance has an optimal solu-
tion S with i ≤ 4 rectangles. Moreover (up to rotating
the instance by a multiple of 90◦ and/or reflecting hor-
izontally) the anchor-points p1, . . . , pi used by S satisfy
one of the following:

1. i = 1, and p1 is the leftmost point of PL ∪ PB.

2. i = 2, and one of the following holds:

(a) p1 is the bottommost point of PL and p2 is the
leftmost point of PT ∪ PB, or

(b) p1 and p2 are the two points of PT ∪ PB with
the closest x-coordinates.

3. i = 3, p1 ∈ PB and p2 ∈ PT ∪ PB have closest x-
coordinates with x(p1) < x(p2), and p3 is the lowest
point in PL.

4. i = 4, p1 ∈ PL and p3 ∈ PR have closest y-
coordinates with y(p1) > y(p3), and p2 ∈ PT

and p4 ∈ PB have the closest x-coordinates with
x(p4) < x(p2).

Algorithm. Our algorithm proceeds as follows. For
each of the four rotations, for each of the two reflections
and for each rule 1, 2(a), 2(b), 3, and 4 in Theorem 2,
compute the corresponding point set. Each of these up
to 40 point sets defines a cell H, and a packing that cov-
ers Q −H (see also Lemma 8). The algorithm returns
the one that has the smallest hole H.

Having PL, PT , PR, and PB sorted along the bound-
ary of Q, we can also compute sorted lists of PL ∪ PR

and PT ∪PB in linear time. The closest pair within each
or between two of them can be computed in linear time.
This implies our claimed running time.

The correctness will be proved in Section 4, and does
not use that Q is a square, only that it is an axis-aligned
rectangle. We hence have:

Theorem 3 The boundary anchored rectangle packing
problem for n points, given in sorted order on the bound-
ary of a rectangle, can be solved in O(n) time.
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Figure 3: (a) The grid Λ. (b) White regions are holes.
Graph G(S) is in red (thick); filled vertices are points
of P . The max-segment s1 is introduced while s2 is not.

4 Correctness of the Algorithm

We first eliminate some simple cases.

Observation 1 Assume one of the following holds.

(i) there exists a point p1 ∈ P on a corner of Q, or

(ii) there exist two points in p1, p2 ∈ PL ∪PR that have
the same y-coordinates, or

(iii) there exist two points in p1, p2 ∈ PT ∪PB that have
the same x-coordinates.

Then we can cover all of Q with anchored rectangles.

Proof. In case (i), one rectangle anchored at p1 can
cover all of Q. In case (ii) and (iii), two rectangles
anchored at p1, p2 can cover all of Q. �

Since these conditions are easily tested, we assume for
most of the remaining section that none of (i-iii) holds.
(We will see that this implies that there must be a hole.)

We need some notation. Throughout this section,
let S be a solution for the BARP problem. The term
“rectangle” now means one of the rectangles used by
S. Define G(S) to be the graph whose vertices are the
rectangle-corners that are not corners of Q, and whose
edges are coincident with the rectangle-sides not on the
boundary of Q; see Figure 3(b).

We define a max-segment of G(S) to be a maximal
chain s of collinear edges of G(S). We say that s is
introduced if at least one endpoint of s belongs to P
and is used as anchor-point for some rectangle of S.
Every edge e belongs to exactly one max-segment se;
we say that e is introduced if se is. See Figure 3(b) We
already know [1] that all boundaries of rectangles can be
assumed to lie on the grid Λ, but we need to strengthen
this a bit and prove the following:

Lemma 4 There exists an optimal solution S such that
all max-segments of S are introduced.

Proof. Let S be an optimal solution that, among
all optimal solutions, minimizes the number of max-
segments. Assume for contradiction that there exists

A A A

B B

s

s�
s�

V

Figure 4: Illustration of the proof of Lemma 4.

a max-segment s that is not introduced. After rotation
we may assume that s is horizontal. Let V be the ver-
tical slab defined by the two vertical lines through the
endpoints of s; see Figure 4.

Consider moving s upward in parallel, i.e., shorten-
ing the rectangles A with their bottom sides on s and
lengthening the rectangles B with their top sides on s.
Observe first that these rectangles indeed can be short-
ened/lengthened, because none of them can be anchord
at a point on s: the only points of s that are possibly in
P are its ends, but neither of them anchors a rectangle
since s is not introduced. If this move of s increases
the coverage, then S was not optimal, a contradiction.
If this decreases the coverage, then moving downward
in parallel would increase the coverage, a contradiction.
So the covered area must remain the same during the
move. Shift s up until it hits either the boundary of
Q or intersects some other horizontal max-segment s�

of G(S). If s hits the boundary of Q, then s disap-
pears and will be deleted from G(S). If s intersects s�

of G(S) (which may be inside V or only share an end-
point with the translated s) then the two max-segments
merge into one. Either way we decrease the number of
max-segments, which contradicts the choice of S and
proves the lemma. �

From now on, without further mentioning, we assume
that S is an optimum solution where all max-segments
are introduced. We also assume that, among all such
optimal solutions, S minimizes the number of rectan-
gles.

Lemma 5 Every internal vertex of G(S) has degree
three or four.

Proof. Every internal vertex b of G(S) resides on the
corner(s) of axis-aligned rectangle(s), and so has degree
at least 2 and at most 4. Assume for contradiction that b
has degree exactly 2, and let a and c be its neighbours.
After possible rotation, we may assume that a lies to
the left of b, and c lies above b, as depicted in Figure 5.
Thus, b is the bottom-right corner of some rectangle
r1, and no other rectangle has b on its boundary. This

140



29th Canadian Conference on Computational Geometry, 2017

b f

r1

r2

r3

r4
H

g

cP

dP

eP

e

no rc here rc

c

aP a

d

b

r1

r2

r3

r4

H

cP

dP

eP

no rc here rc

c

aP a

d

f

g
e

(a) (b)

Figure 5: Illustration of the proof of Lemma 5.

implies that the region to the right of bc and below ab
is a hole H. So rectangle r1 is anchored either on the
left or the top side of Q; after a possible diagonal flip
we assume that it is anchored on the left.

Define aP and cP be the points of P that introduced
ab and cb, respectively; we know that these must be
on PL respectively PT since b has degree 2. By defini-
tion of “introduced” some rectangle rc is anchored at
cP . We claim that rc cannot have cP as its top-right
corner. Assume for contradiction that it did. Then we
can expand rc (if needed) to cover the entire rectangle
spanned by aP and cP ; this can only increase the cover-
age. In particular, the expanded rc covers all of r1. We
know that r1 �= rc since r1 was anchored on the left side
of Q. This contradicts that S has the minimum number
of rectangles, so rc has cP as its top-left corner.

If the right side rs(r1) of r1 is a sub-segment of bc,
then we can stretch r1 to the right to increase the cov-
erage of S, contradicting optimality. So rs(r1) must be
a strict super-segment of bc, which in particular implies
that c is interior and has no leftward edge. Since c is
a vertex, it must have a rightward edge; let d be the
vertex of H to the right of c. Let r2 be the rectangle
whose bottom-left corner is c; this exists since edge cd is
the boundary of some rectangle(s), but the area below
cd belongs to hole H. Rectangle r2 cannot be anchored
on the right, because otherwise we could expand rc to
cover all of r2 and reduce the number of rectangles, a
contradiction. So r2 is anchored on the top, which im-
plies that r2 = rc, else they would overlap.

If the bottom side bs(r2) of r2 is a sub-segment of cd,
then we can stretch r2 down to increase the coverage
of S. So bs(r2) is a strict super-segment of cd, which
implies that d is interior. We iterate this process three
times as follows. (i) Let e be the vertex of H that is
below d, and let r3 be the rectangle whose top-left corner
is d. Argue as before that r3 is anchored at the right
endpoint dP of the max-segment through cd, therefore
the left side ls(r3) is a strict super-segment of de and e is
interior. (ii) Let f be the vertex of H that is to the left
of e, and let r4 be the rectangle whose top-right corner
is e. Argue as before that r4 is anchored at the bottom

endpoint eP of the max-segment through de, therefore
the top side ts(r4) is a strict super-segment of ef and f
is interior. (iii) Finally, let g be the vertex of H that is
above f (possibly g = a). Now observe that the max-
segment through fg cannot reach the boundary of Q
without intersecting r4, r1 or r2. Therefore, fg is not
introduced, a contradiction. �

We assumed that neither (ii) nor (iii) of Observation 1
holds, which means that any grid-line of grid Λ has ex-
actly one end in P . So, we can direct the edges of the
grid (and with it the edges of G(S)) from the end in P
to the end not in P . See also Figure 7. Define a guil-
lotine cut to be a max-segment of G(S) for which both
endpoints are on the boundary Q.

Lemma 6 If there is no guillotine cut, then S has a
hole H. Furthermore, H is a rectangle, H is not inci-
dent to the boundary of Q, and the boundary of H is a
directed cycle of G(S).

Proof. We claim that no vertex w of G(S) on the
boundary of Q is a sink. For if the unique edge inci-
dent to w were directed v → w, then by Lemma 4 and
the way we directed the edges of G(S), the point p that
introduced vw would be on the opposite side and hence
the max-segment pw would be a guillotine cut. Likewise
no interior vertex w can be a sink, because deg(w) ≥ 3
by the previous lemma, which implies that two incident
edge of w have the same orientation (horizontal or ver-
tical). One of them then becomes outgoing at w since
we direct edges along grid-lines. So G(S) has no sink,
which implies that it has a directed cycle C. The re-
gion enclosed by C has no point on the boundary, so
no rectangle anchored on the boundary can cover parts
of it without intersecting C. So the interior region of
C is a hole H not incident to the boundary. We know
that H is a rectangle since it has no vertex of degree
2 by the previous lemma, hence in particular no reflex
vertex. �

This lemma serves as base-case for a stronger claim.

Lemma 7 If S has holes, then it has a hole H that is a
rectangle. Furthermore, every interior corner of H has
an incoming edge that lies on H.

Proof. If there is no guillotine cut, then Lemma 6 gives
a rectangular hole that is interior and whose boundary is
a directed cycle; this satisfies all claims. So, assume that
there is a guillotine-cut aa�, say it is horizontal. Since
(ii) does not hold, not both a and a� can belong to P ,
say a� �∈ P . Segment aa� divides Q into two rectangles
Q1 and Q2 with Q1 above Q2; see Figure 6(a). There is
a rectangle r1 that is anchored at a; up to a vertical flip
we may assume that r1 is inside Q1. Observe that r1
must cover all of Q1, else we could find a solution with
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Figure 6: With a guillotine cut, a hole can be found in
Q2 recursively.

more coverage or fewer rectangles. Thus S� := S \ {r1}
is an anchored-rectangle packing for Q2 with anchor-
points in P \ {a}. S� must be optimal for Q2, else we
could get a better packing for Q by adding r1 to it. It
cannot cover all of Q2 since S had holes. So, induction
applies to S�, and it has a hole H.

Assume first that some vertical edge e of H is in the
interior and directed downward, see Figure 6(b) and (c).
Since e is introduced, the max-segment se containing it
must then extend to the top of Q. This is impossible
since se would intersect r1. So all interior vertical edges
of H are directed upwards.

This immediately shows that H cannot be in the in-
terior of Q2, because then its edges form a directed cy-
cle and one of the vertical ones is directed downward.
Likewise it is impossible that both vertical sides and the
bottom side of H are interior to Q2, since the tail-end
of the bottom side has an incoming edge from H, which
hence must be a downward vertical edge. Therefore H
shares at least one side with the boundary of Q.

It remains to argue that any interior corner c of H
has an incoming edge on H. If c was interior to Q2 as
well then this holds by induction. If c is interior to Q,
but not to Q2, then c lies on aa� but c �= a, a�. Then the
vertical edge of H incident to c is interior to Q2, so it
is directed upward as argued above and hence incoming
to c as desired. �

Hence, hole H must satisfy this hole-condition on the
edge-directions (at least for some optimal solution S);
that is, every interior corner of H has an incoming edge
that lies on H. It turns out that this condition is also
sufficient.

Lemma 8 Let H be a rectangle whose sides lie on Q∪
Λ. If every interior corner of H has an incoming edge
that lies on H, then there exists a packing that covers
Q \H.

Proof. Let p1, . . . , pi (for some i ≤ 4) be the points
of P that defined the grid-lines on which the sides of
H reside. We distinguish cases (1-4) depending on how
many sides of H are interior, where (2) splits further
into (2a) and (2b) depending on whether the sides are
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Figure 7: Any rectangle whose boundary is directed
suitably can be realized as hole.

adjacent or parallel. After possible rotation, the hole
is situated as shown in Figure 7. Every interior corner
of H has an incoming edge that is on H, which (up to
reflection) forces the location of some of p1, . . . , pi as
indicated in the figure. In all cases, one verifies that
i rectangles anchored at p1, . . . , pi suffice to cover Q \
H. �

We are now ready to prove Insight 1. To this end, we
first show the following:

Lemma 9 If S has holes, then it has exactly one hole
H, and H is a cell of Λ.

Proof. Lemma 7 shows we may assume H to be a rect-
angle where all interior corners have incoming edges on
H. By Lemma 8, we can cover Q \ H with anchored
rectangles, which by maximality of S means that H is
unique.

If H is not a cell, then it is bisected by some grid-line
� into two pieces H1 and H2. If some H � ∈ {H1, H2}
satisfies the hole-condition (i.e., all interior corners have
incoming edges on H �), then we can create a packing
that coversQ\H � ⊃ Q\H, which contradicts minimality
of S. In fact, by inspecting the possible configurations
of H in cases 1, 2a, 2b, 3, and 4, as well as possible
placements of the “undecided” anchor-points and the
orientation/direction of � (see Figure 8, which shows all
but one case), we observe thatH1 satisfies this condition
as we can cover Q\H1 in each of these cases. So, there is
a contradiction in all cases, and H must be one cell. �

By Lemma 9, we have characterized solutions that
have holes. It remains to characterize solutions that do
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Figure 8: Any hole bisected by a grid-line � gives rise to
another hole H �.

not have holes; i.e., to show that the conditions (i-iii) of
Observation 1 are necessary.

Lemma 10 If Q can be covered with anchored rectan-
gles, then one of (i-iii) holds.

Proof. Let S be a packing that covers all of Q. If
G(S) has no edge, then all of Q must be covered by one
rectangle, which hence must be anchored at a corner of
Q and (i) holds. So assume that G(S) has edges. By
Lemma 6, since S has no hole there must be a guillotine-
cut aa�, say it is horizontal. If both a and a� are in P
then (ii) holds and we are done, so assume a ∈ P and
a� /∈ P .

Define Q1, Q2 and r1 as in Lemma 7 and observe that
S� := S \ {r1} covers all of Q2 using anchor-points in
P � := P \{a}. Apply induction to S�, P �, Q2. If (i) holds
for them, then P � has a point on a corner of Q2, which
by a, a� /∈ P � is also a corner of Q and we are done. If
(ii) holds for them, then two points in P � ⊂ P have the
same y-coordinate and we are done. Finally (iii) cannot
hold for S�, P �, Q2 because the top side of Q2 has no
point of P � on it since a� �∈ P . �

We are finally ready to prove Theorem 2. Let S be the
optimum solution with the minimum number of rectan-
gles. If S covers all of Q, then by Lemma 10 one of (i-iii)
holds. If (i) holds, then the corner in P will be chosen
under rule (1). (In these and all other cases, “chosen”
means “after a suitable rotation and/or reflection”.) If
(ii) or (iii) holds then the two points with the coinciding
coordinate will be chosen under rule (2b).

If S has holes, then by Lemma 7 its unique hole H is
a cell such that all interior corners of H have incoming
edges on H. Let p1, . . . , pi be the points that introduce
interior sides ofH. We know thatH has one of the types
shown in Figure 7, and p1, . . . , pi hence will be consid-
ered under the corresponding rule. Moreover, all point
sets that fit the type can be realized by Lemma 8. So H
must be the one that minimizes the area, which corre-
sponds to the points minimizing the x-distance resp. y-
distance. So one of rules 1, 2a, 2b, 3 or 4 applies to the
points p1, . . . , pi and Theorem 2 holds.

5 Conclusion

In this paper, we considered a variant of the anchored
rectangle packing in which all points are on the bound-
ary of the square Q. By exploiting the properties of an
optimal solution, we gave an optimal linear-time exact
algorithm for this problem. Observe that our algorithm
covers nearly everything for large n (contrasting with
the fraction of 7/12−ε achieved in the non-boundary
case [1]). For there are (up to rotation) at least n/2
points in RB ∪ PT , which define n/2 + 1 vertical slabs.
Rule (1) or (2b) will consider the narrowest of them as
hole, which has area at most 1/(n/2 + 1) if Q has area
1. So we cover a fraction of 1−O( 1n ) of Q.

The most interesting open question is the status of ar-
bitrary (non-boundary) anchored-rectangle packing. Is
this polynomial-time solvable? As a first step, it would
be interesting to characterize which polygonal curves on
Q ∪ Λ could be boundaries of a hole in a solution.
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