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Abstract

This note is a study on the problem of maximizing the
sum of area of non-overlapping disks centered at a set
of given points in IR2. If the points of P are placed on a
straight-line, then the problem is solvable in polynomial
time. Eppstein [CCCG, pages 260–265, 2016] proposed

an O(n
3
2 ) time algorithm, for maximizing the sum of

radii of non-overlapping balls or disks when the points
are arbitrarily placed on a plane. We show that the so-
lution to this problem gives a 2-approximation solution
for the area maximization problem by non-overlapping
disks or balls. We also present simulation results. Fi-
nally, we propose a PTAS for our problem.

Keywords: Quadratic programming, discrete pack-
ing, range assignment in wireless communication, ap-
proximation algorithm, PTAS.

1 Introduction

Geometric packing problem is an important area of re-
search in computational geometry, and has wide appli-
cations in cartography, sensor network, wireless commu-
nication, to name a few. In the disk packing problem,
the objective is to place maximum number of congru-
ent disks (of a given radius) in a given region. Toth
1940 [3, 12] first gave a complete proof that hexagonal
lattice packing produces the densest of all possible disk
packings of both regular and irregular region. Several
variations of this problem are possible depending on var-
ious applications [2, 12]. In this note, we will consider
the following variation of the packing problem:

Maximum area discrete packing (MADP):
Given a set of points P = {p1, p2, . . . , pn} in IR2,
compute the radii of a set of non-overlapping disks
C = {C1, C2, . . . , Cn}, where Ci is centered at pi ∈
P , such that

�n
i=1 area(Ci) is maximum.

The problem can be formulated as a quadratic program-
ming problem as follows. Let ri be the radius of the disk
Ci. Our objective is:
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Maximize
�n

i=1 r
2
i

Subject to ri + rj ≤ dist(pi, pj), ∀ pi, pj ∈ P , i �= j.

Here, dist(pi, pj) denotes the Euclidean distance of pi
and pj .

The motivation of the problem stems from the range
assignment problem in wireless networks. Here the in-
puts are the base-stations. Each base-station is assigned
with a range, and it covers a circular area centered
at that base-station with radius equal to its assigned
range. The objective is to maximize the area cover-
age by these base-stations without any interference. In
other words, the area covered by two different base-
stations should not overlap. Surprisingly, to the best
of our knowledge, there is no literature for the MADP
problem. A related problem, namely maximum perime-
ter discrete packing (MPDP) problem, is studied re-
cently by Eppstein [4], where the objective is to compute
the radii of the disks in C maximizing

�n
i=1 ri subject

to the same set of linear constraints. This is a linear
programming problem for which polynomial time algo-
rithm exists [10]. In particular, here each constraint
consists of only two variables, and such a linear pro-
gramming problem can be solved in O(mn3 logm) time
[9], where n and m are number of variables and num-
ber of constraints respectively. In [4], a graph-theoretic
formulation of the MPDP problem is suggested. Let
G = (V,E) be a complete graph whose vertices V cor-
respond to the points in P ; the weight of edge (i, j) ∈ E
(i �= j) is dist(pi, pj), which corresponds to the con-
straint ri + rj ≤ dist(pi, pj). They computed the mini-
mum weight cycle cover of G in time O(mn+ n2 log n)
time. Since m = O(n2) in our case, the time complexity
of this algorithm is O(n3). They further considered the
fact that a constraint ri + rj ≤ dist(pi, pj) is useful if
δ(pi) + δ(pj) ≥ dist(pi, pj), where δ(p) is the distance
of the point p and its nearest neighbor in P ; otherwise
that constraint is redundant. They also showed that
the number of useful constraints is O(n), and thus the
overall time complexity becomes O(n2 log n). They used
further graph structure to reduce the time complexity.
In IRd, the time complexity of this problem is shown to
be O(n2− 1

d ).

It is well-known that if Q is a positive definite ma-
trix, then the quadratic programming problem which
minimizes X̃ �QX̃ subject to a set of linear constraints
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AX̃ ≤ b̃, X̃ ≥ 0 is solvable in polynomial time [8].
However, if we present our maximization problem as a
minimization problem, the diagonal entries of the ma-
trix Q are all −1 and the off-diagonal entries are all
zero. Thus, all the eigen values of the matrix Q are −1.
It is already proved that the quadratic programming
problem is NP-hard when at least one of the eigen val-
ues of the matrix Q is negative [11]. Recently, MADP
problem is also shown to be NP-hard [1]. For the mini-
mization version of an NP-hard quadratic programming
with n variables and m constraints, an (1− 1−�

(m(1+�))2 )-

approximation algorithm is proposed in [6], which works
for all � ∈ (0, 1− 1√

2
). The time complexity of this algo-

rithm is (n3(m log 1
δ + log log 1

� )), where δ is the radius
of the largest ball inside the feasible region defined by
the given set of constraints.

For our MADP problem, a 4-approximation algorithm
is easy to get.

For each point pi ∈ P , let N (pi) ∈ P be its near-
est neighbor. We assign ri = 1

2dist(pi,N (pi)) for
each i = 1, 2, . . . , n. Thus, all the constraints
are satisfied. The approximation factor follows
from the fact that ri can take maximum value of
dist(pi,N (pi)).

In this note, we first show that if the points in P are
placed on a straight line, then the MADP problem can
be optimally solved in O(n2) time. As a feasible solu-
tion of the MPDP problem is also a feasible solution of
the MADP problem, it is very natural to ask whether an
optimal solution of the MPDP problem is a good solu-
tion for the MADP problem. We answer this question in
the affirmative. We show that the optimum solution for
the MPDP problem proposed in [4] is a 2-approximation
result for the MADP problem. Finally, we propose a
PTAS for the MADP problem.

2 Preliminaries

In a solution of the MADP problem, each disk is cen-
tered at some point in P . A solution of the MADP
problem is said to be maximal if each disk touches some
other disk in the solution1. From now onwards, by a
solution of a MADP problem, we will mean it to be a
maximal solution.

The nearest neighbor of a point pi ∈ P is denoted by
N (pi) ∈ P . Here, a point pi ∈ P is said to be a defining
point of the said solution if it appears on the boundary
of some disk in the solution; otherwise it is said to be
a non-defining point. A non-defining point pi ∈ P will

1If a zero-radius disk does not touch any other disk in the
solution, it or its neighboring disk can be enlarged to increase the
total area in the solution.

pipj

full-radius (corresponds to dist(pi, pj))

part-radius
(corresponding to a

pk
dist(pi, pj)

rj

residue-distance |dist(pi, pj)− rj|)

Figure 1: full-radius, part-radius and residue-distance
of Ci with respect to pj

be covered with a disk Ci centered at point pi, and its
radius ri is either equal to or less than dist(pi, qi), where
qi = N (pi) is a defining point. In the former case, Ci

is said to have full-radius, and in the later case, Ci is
said to have part-radius since the boundary of Ci does
not have any point in P . Let us consider a neighbor
pj of the point pi which has a disk Cj of radius rj . We
will use the term residue-distance to indicate a feasible
radius for the disk Ci of length |dist(pi, pj)− rj |, i �= j,
if |dist(pi, pj) − rj | ≤ |dist(pi,N (pi))| (see Figure 1).
Thus, the residue-distance of a disk Ci (centered at pi)
is zero if N (pi) is a defining point. For each full-radius
(resp. part-radius) of a disk Ci corresponding to pi, we
define a full-radius interval (resp. part-radius interval)
of length 2·full-radius (resp. 2·part-radius) whose center
lies on pi.

3 MADP problem on a line

In this section we are going to consider a constrained
version of the MADP problem, where the point set P =
{p1, p2, . . . , pn} lies on a given line L, which is assumed
to be the x-axis. We also assume {p1, p2, . . . , pn} is
sorted in left to right order. Our objective is to place
non-overlapping disks centered at each point pi ∈ P
such that the sum of the area formed by those disks is
maximized.

Lemma 1 In the optimum solution of the MADP prob-
lem on a line, at least one of the leftmost or rightmost
point in P must be either a defining point or its corre-
sponding disk has full radius.

Proof. Let us denote d(pi, pi+1) = di for all i =
1, 2, . . . , n − 1. For the contradiction, let the left-
most point p1 in P has radius r1 satisfying 0 < r1 <
dist(p1,N (p1)) (see Figure 2). If r2 = d2 < d1 − r1,

127



CCCG 2017, Ottawa, Ontario, July 26–28, 2017

then we can increase r1, indicating the non-optimality
of the solution. If r2 = d1 − r1, then r3 = min(d3, (d2 −
(d1−r1))). Assuming r3 = d2−(d1−r1) and proceeding
similarly, we may reach one of the following two situa-
tions:

1. rk = dk−1 − (dk−2 − (. . . (d1 − r1))) . . .), and the
values of rk+1, . . . , rn are independent of r1.

2. rn−1 = dn−2− (dn−3− (. . . (d1−r1))) . . .) and rn =
dn−1 − rn−1.

In Case 1, we show that Sk = r21 + r22 + . . . + r2k can
be increased while keeping the values of rk+1, . . . , rn
unchanged.

Sk = π · (r21 + (d1 − r1)
2 + (d2 − (d1 − r1))

2 + . . .
+(dk − (dk−1 − (. . . (d1 − r1))))

2)
= π · (k · r21 − 2r1 · c2 + c1),

where c1 = d21 + (d2 − d1)
2 + . . .

+(dk − (dk−1 − (. . .+ (−1)k · d1)))2, and
c2 = (d1 − (d2 − d1) + . . .

+(−1)k−1(dk − (dk−1 − (. . .+ (−1)k · d1))))).

Thus, Sk is a parabolic function whose minimum is
attained at r1 = c2

k , and it attains maximum at the
boundary values of the feasible region of r1, i.e either at
r1 = 0 or d1.

In Case 2, if rn > rn−1, we can increase the sum Sn by
setting rn = dn−1, rn−1 = 0 and keeping r1, r2, . . . , rn−2

unchanged. Now, r21 + r22 + . . . + r2n−2 can further be
increased as in Case 1. Similarly, if r1 > r2 then also Sn

can be increased by setting r1 = d1 and r2 = 0, and then
maximizing r23 + r24 + . . .+ r2n as in Case 1. If rn ≤ rn−1

and r1 ≤ r2, then also Sn is a parabolic function of r1,
and it is maximized at either r1 = 0 or r1 = min(d1,α)
where α = value of r1 for which rn−1 = dn−1

2. �

d1 d2 d3
p1 p2 p3 p4 pn

r1

d1-r1
d2-(d1-r1)

Figure 2: An instance in which k = 3

In an optimum solution all the disks have either full-
radius or zero radius or has radius equal to the residue
distance with respect to the radius of its neighboring
points.

Full-radius disks (intervals) are easy to get. For each
point pi, find its nearest neighbor N (pi) = pi−1 or pi+1,

2Here right-end of the feasible region of r1 is obtained by plac-
ing a disk of radius dn−1 at pn, and placing disks at points
pn−1, . . . , p2 touching those of pn, . . . , p3, and then placing the
disk of radius α at p1 that touches the disk at p2. Here surely
α ≤ d1.

and define an interval of length 2 · dist(pi,N (pi)), cen-
tered at pi. We now describe the generation of all pos-
sible part-radius intervals for each point pi ∈ P consid-
ering them in left to right order.

• For both the points p1 and p2, there is no part-
radius interval.

• If N (p2) = p1, then for point p3, there is a part-
radius interval of length 2(d2 − d1), centered at p3;
otherwise there is no part-radius interval for the
point p3.

• In general, for an arbitrary point pk if there are
m number of part-radius intervals I1, I2, . . . , Im of
lengths 2δ1, 2δ2, . . . , 2δm respectively, then each of
these intervals Ij gives birth to a part-radius inter-
val for the point pk+1 with center at pk+1 of length
2 · (dk − δj).
In addition, if N (pk) = pk−1, then for point pk+1,
there is another part-radius interval centered at
pk+1 and of length 2(dk − dk−1).

Finally, we have I = ∪n
i=1Ii. A similar process is per-

formed to generate part-radius intervals J by consider-
ing the points in P in right to left order.

Lemma 2 For a set P of n points lying on a line L,
the maximum number of intervals generated by the above
procedure is Θ(n2).

Proof. Let us first consider the forward pass as ex-
plained above. Here, for each point pi (in order) a
full-radius interval is generated, and the full-radius in-
terval for point pi may generate a part-radius interval
for each point pj , j = i + 1, . . . , n. Thus, for all the
points in P , we may get O(n2) intervals. To justify the
number of intervals is Ω(n2), see the demonstration in
Figure 3. Here the points pi = (xi, 0), i = 1, 2, . . . , n
are placed on the x-axis, where x1 = 0, x2 = 1 and
xi = (xi−1 − xi−2) + 0.5, i = 3, 4, . . . , n. Here for each
generated interval at pi, a part-radius interval for the
points pj , j = i + 1, . . . , n will be generated. The same
argument follows for the reverse pass also. �

0 1 2.5 4.5 7 10

Figure 3: An Ω(n2) instance of full and part radius
intervals

For each of these intervals we assign weight equal to
the square of their half-length. We sort the right end
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points of these intervals. For this sorted set of weighted
intervals, we find the maximum weight independent set.
This leads us to the following theorem.

Theorem 3 Given a set P of n points on a line L,
one can place non-overlapping disks maximizing sum of
their area in O(n2) time.

Proof. We can generate the intervals in O(n2) time
as follows. Given a set of intervals Ii (of full- and part-
radius) generated for a point pi which are sorted by their
right end-points, we can generate the set of part-radius
intervals Ii+1 for the point pi+1 in O(i) time. Thus,
total time for interval generation is O(n2) in the worst
case. Since intervals for each point pi are generated
in sorted manner, ordering them with respect to their
end-points also takes O(n2) time. Finally, computing
the maximum weight independent set of the sorted set
of intervals ∪n

i+1Ii using dynamic programming needs
O(n2) time [7].

The correctness of the algorithm follows from the fact
that, if there is a interval θ corresponding to point pi
in the optimum solution that does not belong to I ∪J ,
then it is not generated by any interval in Ii−1 and Ji+1.
As a result it does not touch any interval of Ii+1 and
also Ji−1. Thus, interval θ can be elongated to increase
the total covering area. �

4 Approximation algorithm

In this section, we first show that the optimum solu-
tion for the MPDP problem proposed in [4] gives a 2-
approximation result for the MADP problem. We also
propose a PTAS for the problem.

4.1 2-factor approximation algorithm

Given a set of points P in the plane, let R = {ri, i =
1, 2, . . . , n} be the set of radii of the points in P obtained
by the optimum solution for MPDP problem [4]. It
is clear that any feasible solution of the MPDP is a
feasible solution of the MADP problem. We show that
an optimal solution of the MPDP problem is at most
2 × OPT , where OPT is the optimum solution of the
corresponding MADP problem.

Lemma 4 [4] The maximum sum of radii of non-
overlapping disks, centered at points pi ∈ P , equals
half of the minimum total edge length of a collection of
vertex-disjoint cycles (allowing 2-cycles) spanning the
complete geometric graph on the points pi ∈ P with
each edge having length equal to the distance between
the end-points of that edge.

Lemma 5 [4] In the minimum total edge length of a
collection of vertex-disjoint cycles, each cycle is either
of odd length or a 2-cycle (i.e., a single edge).

The implication of Lemma 4 and 5 is that in the opti-
mum solution of the MPDP problem, each disk touches
its neighboring disk(s) in the cycle in which it appears.

In [4], an O(n1.5) time algorithm is proposed to com-
pute the minimum length cycle cover C of the com-
plete geometric graph G with a set P of n points on
the plane. From the geometric property of the Eu-
clidean distances, they show that if a subgraph G� of
G is formed by removing all the edges (pi, pj) satisfying
dist(pi,N (pi)) + dist(pj ,N (pj)) < dist(pi, pj), then the
minimum weight cycle cover of G� remains same as that
in G. We now prove the main result in this section.

Lemma 6 For a given set of points P arbitrarily
placed in the plane, the radii {ri, i = 1, 2, . . . , n} in
the optimum solution of the MPDP problem is a 2-
approximation result for the MADP problem for the
point set P .

Proof. As mentioned, MPDP algorithm generates the
cycles C = {C1, C2, . . . , Ck}. We need to show that�n

α=1 r
2
α ≥ 1

2

�n
α=1 ρ

2
α, where ρα is the radius in the

optimum solution of the MADP problem for the point
pα. We show that

�n
pα∈Ci

r2α ≥ 1
2

�n
pα∈Ci

ρ2α for each
cycle Ci ∈ C. As each disk participates in exactly one of
the cycles, aggregating these relations for all the cycles
Ci, i = 1, 2, . . . , k, we will have the desired result. Let
us consider the following two cases separately.

Ci is a 2-cycle (pα, pβ): Let r = dist(pα, pβ). As the
disks centered at pα and pβ in R are touching to
each other, let rα = r

2 − δ and rβ = r
2 + δ. Thus,

r2α + r2β ≥ r2

2 .

Note that in the optimum solution of the MADP
problem, the disks for pα, pβ may not be touching,
but ρα + ρβ ≤ dist(pα, pβ). So, the upper bound
of the sum of squares of the radii in the optimum
solution is: ρ2α+ρ2β ≤ (ρα+ρβ)

2 ≤ (dist(pα, pβ))
2 =

r2.

Thus, for the two-cycle Ci = (pα, pβ), we have r
2
α+

r2β ≥ 1
2 (ρ

2
α + ρ2β).

Ci is an odd cycle: Let the length of the cycle be m.
Without loss of generality, assume that the vertices
be p1, p2, . . . , pm. For each edge (pα, pα+1) of this
cycle (where the indices are numbered modulo m),
we have r2α + r2α+1 ≥ 1

2 (ρ
2
α + ρ2α+1) (as explained in

the earlier case). Adding these inequalities for α =
1, 2, . . . ,m, we have 2

�m
α=1 r

2
α ≥ 1

2 [2
�m

α=1 ρ
2
α]. Ig-

noring 2 in both sides, we have the result. �
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Combining Lemma 6 with the time complexity result in
[4], we have the following result.

Theorem 7 For a given set of points P arbitrarily
placed in the plane, one can compute a 2-approximation
result of the MADP problem in O(n

3
2 ) time.

4.2 Experimental results

We performed a thorough experimental study on this
problem by considering random instances. We con-
sidered point sets of different size n, and generated
50 samples3, where each sample consists of n points.
For each sample, we formulated the quadratic pro-
gramming problem, and run LINDO software to gen-
erate the optimum solution MADPopt. We also run
the MPDP algorithm [4]. Let MADPsol =

�n
i=1 r

2
i ,

where {r1, r2, . . . , rn} is the optimum solution of the
MPDP problem. For each sample, we computed the
ratio

MADPopt

MADPsol
, and compute the average and maxi-

mum of these ratios. Finally, we report MADPavg and
MADPmax for each n. Though, we could only show
that the result of the MADP problem using the radii
obtained by the MPDP algorithm is a 2-approximation
result, it shows much better performance in our exper-
iment on random instances.

Table 1: Experimental result

Sum of square of radii
obtained by

MPDP algorithm
n average maximum

10 1.18383 1.5467

20 1.16704 1.38786

30 1.1568 1.39329

40 1.15132 1.18855

50 1.1728 1.23154

4.3 PTAS

In this section, we propose a PTAS for the MADP
problem. In [5], Erlebach et al. proposed a (1 + 1

k )-
approximation algorithm for the maximum weight in-
dependent set for the intersection graph of a set of
weighted disks of arbitrary size. We will use this al-
gorithm in designing our PTAS.

For each pi ∈ P , let the maximum possible radius be
�i = dist(pi,N (pi)). Thus, the maximum possible area

3Since generating the optimum result is time consuming, the
table entries for n = 40 and 50, the average and maximum is
computed only for 5 samples.

be αi = π�2i . Given an integer k, we compute hi =
αi

k ,
and define k + 1 circles Ci = {Ci

0, C
i
1, . . . , C

i
k} centered

at pi with area {0, hi, 2hi, . . . , khi} (see Figure 4). Each
disk is assigned weight equal to its area. Now we con-
sider all the disks ∪n

i=1Ci, and use the algorithm of [5] to
compute the maximum weight independent set (MWIS)
A. Note that the number of disks centered at any point
pi present in both the optimum solution and in our al-
gorithm for the MWIS problem of ∪n

i=1Ci is exactly one.

pi
N (pi)

bi

circles in Ci

pi

corresponding to
each annulus, area:

[dist(pi,N (pi))]
2

k

oi (in the optimum
solution of MADP)

Figure 4: Demonstration of PTAS

Let oi and ai be the disks centered at pi in the optimum
solution and in our solution (A) respectively, and Oi, Ai

be their respective area. Let Θ =
�n

i=1 Ai be the solu-
tion obtained by our algorithm, and OPT =

�n
i=1 Oi be

the value of the optimum solution. We need to analyze
the bound on OPT

Θ .

Let �OPT be the optimum solution of the MWIS prob-
lem among the set of disks ∪n

i=1Ci. Thus, OPT
Θ =

OPT
�OPT

× �OPT
Θ . Following [5],

�OPT
Θ ≤ 1+ 1

k . It remains to

analyze OPT
�OPT

.

Now, let us consider the disks in OPT . For each point
pi, let bi be the largest disk in Ci among those which
are smaller than equal to oi (see the blue and red disks
in Figure 4). Thus, {b1, b2 . . . , bn} is a feasible solution.
Let LB(OPT ) =

�n
i=1 Bi, where Bi = area of the disk

bi. LB(OPT ) is the lower bound of OPT .

OPT
�OPT

= OPT
LB(OPT )×

LB(OPT )
�OPT

. Since �OPT is the optimum

solution among the disks ∪n
i=1Ci, and LB(OPT ) is a

feasible solution of the MWIS problem among the disks

∪n
i=1Ci, we have �OPT ≥ LB(OPT ).

Now, consider OPT − �OPT ≤ OPT − LB(OPT ) =�n
i=1(Oi − Bi) ≤ 1

k

�n
i=1 �

2
i , since Oi − Bi ≤ 1

k �
2
i

by our construction (see Figure 4). We also have
OPT ≥ 1

4

�n
i=1 �

2
i from the method of getting the 4-

approximation result, mentioned in Section 1.

Thus, OPT−�OPT
OPT ≤ 4

k , implying
�OPT
OPT ≥ 1− 4

k .

In other words, OPT
�OPT

≤ 1 + 1
k� , where k� = k−4

4 . Thus,
OPT
Θ ≤ (1 + 1

k )(1 + 1
k� ) ≤ (1 + 1

k�� ), where k�� = k−4
5 .

Thus, we have the following result.
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Theorem 8 Given a set of points P in IR2 and a pos-
itive integer k, we can get a (1 + 1

k )-approximation al-

gorithm with time complexity (nk)O(k2).

5 Summary

Following Eppstein’s work [4] on placing non-
overlapping disks for a set given points on the plane
to maximize perimeter, we tried to study the area max-
imization problem under the same setup. We observe
that the solution of the perimeter maximization prob-
lem gives a 2-approximation result of the area maxi-
mization problem. Though the perimeter maximization
problem is polynomially solvable, the area maximiza-
tion problem is NP-hard [1]. However, the said problem
has a PTAS. Needs to mention that, if the points are
placed on a straight line, then the area maximization
problem is solvable in polynomial time.
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