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Optimal Orientation of Symmetric Directional Antennas on a Line
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Abstract

In this paper, we study the problem of optimal orienta-
tion of directional antennas on a line in the symmetric
model of communication. We propose an optimal algo-
rithm to find the minimum radius and the orientation
of antennas, when antennas are placed on a point set P
on a line, and each antenna has angle less than π. We
show that the connected graph induced by this optimal
orientation is a 7-hop spanner with respect to the unit
disk graph of P . Moreover, we present a determinis-
tic local routing algorithm that is guaranteed to find a
path between any pair of antennas in the communica-
tion graph whose number of edges is at most 7 times
the number of edges between that pair in the unit disk
graph.

1 Introduction

Wireless networks have received cosiderable attention
in recent years due to their vast applications in various
areas [11, 12]. Most of the time, wireless networks are
modelled as a set P of n wireless nodes, where each node
is equipped with an omni-directional antenna whose
coverage area is a disk. Assuming identical transmission
range for antennas, one can properly scale distances to
make this transmission range equal to unit, and hence,
the communication graph of antennas becomes equal to
the unit disk graph of P , in which two antennas are
connected if and only if the distance between them is at
most unit.

Recent attention in the area of wireless networks has
shifted from omni-directional antennas to directional
antennas, due to their desirable properties such as im-
proving security and reducing overlap [3]. A directional
antenna can focus its transmission energy in a specific
direction by narrowing coverage area, which is modelled
by a sector of a fixed angle α and a radius r (see Fig-
ure 1(a) for an example). Antennas at different nodes
can be oriented in different directions. There are two
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main models of communication in networks with direc-
tional antennas. In the asymmetric model, each an-
tenna has a directed link to any other node that lies in
its coverage area. In the symmetric model, there exists
a link between two antennas u and v, if and only if u lies
in the coverage area of v, and v lies in the coverage area
of u. The symmetric model of communication is more
practical, especially in networks where handshaking is
required before transmitting data [7]. An example is
illustrated in Figure 1(b).
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Figure 1: (a) A directional antenna. (b) A symmetric
communication graph.

A network is called a spanner, if there is a path be-
tween any pairs of nodes, within a guaranteed ratio to
the shortest paths between those nodes in an under-
lying base graph. This ratio is also called the stretch
factor [14]. While the finite stretch factor is sufficient
for existence of such a path between nodes through the
network, the problem of efficiently finding the short-
est path is central to many fields such as robotics and
communication networks. In many cases, a node is not
aware of the whole structure of the graph, and must
learn this information through exploration. Algorithms
for routing in these types of environments are called local
routing algorithms. In local routing, for routing from a
source point s to a destination point t, the current point
u only knows about its neighbors and the location of t
and should decide the next movement only using this
information. A routing algorithm is c-competitive if the
total distance traveled by the algorithm from any point
s to any destination t, is not more than c times the
length of the shortest path between those nodes in the
graph. Parameter c is called the competitive ratio of the
algorithm [4].

In this paper, we focus on the 1-dimensional version,
where directional antennas are located on a set of points
along a line. We assume the symmetric model for com-
munication between the antennas. First we study the
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optimal orientation that, while it results in connectiv-
ity of the network, requires a minimum radius for the
antennas. Then we prove that the resulting communi-
cation graph is a spanner with a constant stretch factor
and also present a competitive local routing algorithm
for this communication graph.

Related Work. The connectivity of communication
graphs in the symmetric model was first studied by Ben-
Moshe et al. [2]. They considered a limited setting (i.e.,
quadrant antennas and half-strip antennas) in which the
orientation of antennas were chosen from a fixed set of
directions. They showed how to orient antennas so that
the communication graph becomes connected. Subse-
quent studies considered a more general setting, where
each antenna can have an arbitrary orientation. Carmi
et al. [7] proved that for α ≥ π/3, it is always possible to
orient antennas so that the induced graph is connected.
However, in their construction, the radius of the anten-
nas are related to the diameter of the set of nodes, and
hence the communication graphs can have a very large
stretch factor, e.g., O(n), compared to the original unit
disk graph (i.e., the omni-directional graph of radius 1).
Therefore, subsequent work considered the radius and
stretch factor of the communication graph and proposed
some approximation algorithms to minimize these fac-
tors. Aschner et al. [1] presented an algorithm to orient
the antennas with angle π/2 and radius 14

√
2 to obtain

a 8-hop spanner, assuming that the unit disk graph of
the nodes is connected. In a t-hop spanner, the number
of hops (i.e., links) in a shortest link path between any
pair of nodes is at most t times the number of hops in
the shortest link path between those two nodes in the
base graph, which happens to be a unit disk graph in
this case. Tran et al. [15] improved the radius for the
case α = π/2 to 9. Dobrev et al. [10] showed that the
connectivity problem is NP-hard for α < π/3, where the
radius is 1, and showed how to construct hop spanners
for various values of α ≥ π/2.
Moreover, the problem of assigning transmission

ranges to the omni-directional antennas placed arbitrar-
ily on a line in order to achieve a strongly connected
communication network with minimum total power
consumption, was studied in the literature. Kirousis
et al. [13] proposed an O(n4) time algorithm to obtain
an optimal solution for this problem. Then, Das et al. [9]
and Carmi et al. [6] improved the running time to O(n3)
and O(n2), respectively. Also, Clementi et al. [8] consid-
ered the range assignment and stretch factor for noted
problem. They presented a 2-approximation algorithm
for the range assignment with running time O(hn3),
where any pair of stations can communicate in at most
h hops, to have a spanner with respect to the num-
ber of links. Furthermore, Carmi et al. [6] proposed
a polynomial time algorithm to find the minimum ra-
dius whose induced communication graph becomes a t-

spanner, for any t ≥ 1. This problem was also studied
for the asymmetric model of communication and Cara-
giannis et al. [5] proved that for a set of n points on a
line, 0 ≤ α < π and r > 0, there exists an orientation of
sectors of angle α and radius r at the points so that the
communication graph is strongly connected if and only
if the distance between points i and i + 2 is at most r,
for any i = 1, 2, . . . , n− 2.

Our Results. In this paper, we study the problem of
orienting a set of directional antennas on a line, to make
the resulting communication graph connected, while the
transmission range (radius) is minimized. We present
an efficient algorithm that finds an orientation with op-
timal radius in linear time. This is indeed the first algo-
rithm for the problem that achieves an optimal radius.
We prove that the communication graph obtained

from this orientation is a 7-hop spanner, meaning that
the shortest link distance between any pair of nodes in
the resulting communication graph is at most 7 times
the shortest link distance between those nodes in the
unit disk graph of the points. In other words, we com-
pare the stretch factor of our connected directional net-
work to that of a connected omni-directional network.
We also present an algorithm to route locally in this
communication graph with a competitive ratio of 7. To
the best of our knowledge, there is no previous result
for routing locally and competitively in the communi-
cation graph of directional antennas, and hence, we are
presenting the first such result in this paper.

2 Preliminaries

Let P be a set of points in the plane, and G be a graph
on the vertex set P . For two points p, q ∈ P , we denote
by δG(p, q) the shortest link distance between p and q in
G, i.e. the minimum number of edges needed to connect
p and q in G. If the graph G is clear from the context,
we simply write δ(p, q) instead of δG(p, q). A path that
realizes δ(p, q) is called a shortest path. For two points
p and q in the plane, the Euclidean distance between
p and q is denoted by ∥pq∥. Throughout the paper,
the farthest and nearest neighbors are in terms of the
Euclidean distance.
For a point set P , we denote by UDG(P ) the unit disk

graph of P , i.e. a graph on the vertex set P in which
two vertices are connected if and only if they are within
distance unit of each other. Throughout this paper, we
assume that UDG(P ) is connected, which is necessary
for the omni-directional network on P to be connected.
We also assume that the largest edge in UDG(P ) has
unit length. This assumption can be easily realized by
a proper scaling of the point set.
Given two graphs H and G on the vertex set P , we

call H a t-hop spanner with respect to G, if for any two
vertices u and v in G, we have δH(u, v) ≤ t · δG(u, v).
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Figure 2: The right and left orientations.

Given a routing algorithm A on G, we say that A is
c-competitive, if for any pair of vertices s and t, the
number edges on the path found by A from s to t in G
is at most c times the shortest link distance between s
and t in UDG(P ).

3 An Algorithm for the Optimal Orientation

In this section, we propose a linear-time algorithm for
the optimal orientation in one dimension. More pre-
cisely, we direct antennas located on a point set P placed
on a line, to obtain a connected communication graph,
while minimizing the radius. The challenging part of
the problem is when α < π. (The case α ≥ π is pretty
straight-forward.) In this case, each antenna covers at
most a half-plane. Since antennas are located on a line,
their orientation can be viewed as either left or right,
ignoring the value of α. We denote antennas facing left
and right using symbols ⟩ and ⟨, respectively (see Fig-
ure 2).
We first present a lemma, describing a useful property

of the optimal orientations.

Lemma 1 There is always an optimal orientation for
the antenna set P , in which no three consecutive anten-
nas are in the same direction.

Proof. Given an optimal orientation, let a bad triple
be a set of three consecutive antennas with the same
orientation. We observe that for any bad triple, the
middle antenna is not needed for the connectivity of its
left and right neighbors, so we can change its direction
without harming the connectivity of the two neighbor-
ing antennas. Since the left and right antennas remain
connected regardless of the direction of the middle an-
tenna, the middle antenna also remains connected in ei-
ther direction. Now, consider the optimal solution with
the minimum number of bad triples. If this number is
not zero, then we can decrease it by the above observa-
tion (finding a bad triple and changing the direction of
the middle one). Therefore, there is always an optimal
solution with no bad triples. □

Using Lemma 1, we can devise a dynamic programming
approach to find an optimal orientation in linear time.
In an orientation of antennas, let a block be a maximal
sequence of consecutive antennas starting with one or

more antennas facing to the right, and followed with one
or more antennas facing to the left. For example, the
orientation ⟨⟩⟨⟨⟩⟨⟨⟨⟩⟩ consists of three blocks of lengths
2, 3, and 5, respectively. In an optimal orientation, the
leftmost (resp., rightmost) antenna is directed to the
right (resp., left), and hence, an optimal orientation can
be viewed as a series of blocks. By Lemma 1, there is an
optimal orientation in which all blocks are either ⟨⟩, ⟨⟨⟩⟩,
⟨⟨⟩, or ⟨⟩⟩. We try to find such an optimal orientation
using dynamic programming.
We observe that the following two conditions are nec-

essary and sufficient for an orientation to have a con-
nected communication graph:

(I) The subgraph of each block is connected.

(II) Each block has edges to its neighboring blocks.

These conditions guarantee that the graph is com-
posed of a set of connected components, each of which
connected to its two neighboring components, and
hence, the whole graph is connected. By the first condi-
tion, the nodes in a block must be able to communicate
without getting help from other blocks. Since the min-
imum radius for block ⟨⟨⟩⟩ is equal to the maximum of
the radii for two blocks ⟨⟨⟩ and ⟨⟩⟩, we only need to con-
sider these three types: ⟨⟩, ⟨⟨⟩, and ⟨⟩⟩. This condition
holds if and only if the leftmost and rightmost antennas
in the block are connected to at least one other node.
It means that the leftmost ⟩ and ⟨ must be connected,
and analogously the rightmost ones should cover each
other. This suggests the lower bound on the radius in
this orientation.
By the second condition, two neighboring blocks

should be able to directly communicate. Two consec-
utive blocks B1 and B2 (B1 is to the left of B2) are
connected to each other, if and only if the rightmost ⟨
in B1 is connected to the leftmost ⟩ in B2. So the dis-
tance between these two nodes is another lower bound
on the radius.
By the structure of the blocks, there is always an

optimal orientation, which ends with the patterns il-
lustrated in Figure 3 (since the rightmost part of the
configuration is considered, the block ⟨⟩⟩ is always as
good as the block ⟨⟨⟩ as illustrated in case 1). As we
can see in Figure 3, the ⟨⟩ setting appears in every case.
Now let x1 < x2 < · · · < xn be the position of the an-
tennas P on the real line, we define ri to be the optimal
radius for the subproblem restricted to the first i an-
tennas with an extra restriction that the last block has
the ⟨⟩ setting (like cases 2 and 3). Thus, we have the
following recursive formula for ri, when i > 4:

ri = min{max{ri−2, xi − xi−3},max{ri−3, xi − xi−4}}
Actually, in the subproblems like cases 2 and 3, we

need radius at least xi − xi−3 and xi − xi−4, respec-
tively for the connectivity condition (II) to hold for the

122



29th Canadian Conference on Computational Geometry, 2017

Case 1

Case 2

Case 3

Figure 3: Optimal substructures for orienting antennas.

last two blocks (these radii surely guarantee that con-
dition (I) holds for these blocks). Moreover, by the ob-
servation in Figure 3, to have connectivity condition
(I) for the last block in case 1, the radius must be at
least xn − xn−2. So, the optimal radius is equal to
min{rn,max{rn−1, xn − xn−2}}. The following pseudo-
code shows the dynamic programming algorithm based
on the above recursive formula.

Algorithm 1 Optimal Orientation

input: x1, x2, · · · , xn the position of antenna set P
output: Optimal radius r

1: for i ← 1 to 4 do
2: ri ← xi − x1

3: for i ← 5 to n do
4: ri ← min{max{ri−2, xi − xi−3},max{ri−3, xi −

xi−4}}
5: r ← min{rn,max{rn−1, xn − xn−2}}

Algorithm 1 only computes the optimal radius. How-
ever, it can be easily modified to output the optimal
orientation as well, by storing in a second table the di-
rections minimizing the radii in lines 4 and 5 of the
algorithm. All together, we get the following result.

Theorem 2 Let P be a set of points on a line. There
exists a linear-time algorithm that finds an optimal ra-
dius r and an optimal orientation of antennas with angle
α < π and radius r located on P , such that the resulting
communication graph G(P ) is connected.

Remark. Given that a linear-time algorithm exists
for the optimal orientation in one dimension, one may
be tempted to find a simpler greedy strategy for the
problem. For example, for the decision version of the
problem which asks for a fixed radius r, if an orien-
tation exists that makes the resulting communication
graph connected, the following greedy strategy seems
promising: starting from the leftmost antenna p, find
the rightmost antenna q which is within distance r of p.
We then orient p to the right and q to the left. All other
antennas between p and q can be safely oriented to the
right. We then repeat this process, with the antenna to
the left of q as p. It is not hard to see that this greedy
strategy may not work properly (see Figure 4).

r

A proper ordering

Greedy algorithm

r

Figure 4: The greedy algorithm fails to build a con-
nected communication graph using radius r.

4 Stretch Factor of the Optimal Orientation

In this section, we prove that the communication graph
obtained by Algorithm 1 is a t-hop spanner with respect
to the unit disk graph of P .

Theorem 3 Let P be a point set on a line such that
UDG(P ) is connected. The communication graph G(P)
obtained by the optimal orientation in Algorithm 1 is a
7-hop spanner of UDG(P ).

Proof. Consider an arbitrary edge (u, v) ∈ UDG(P ).
We show that δ(u, v) in G(P ) is at most 7, while all
possible orientations of the antennas located on u and
v are considered. Assume w.l.o.g. that u is to the left
of v. There are three possible cases.

– Antennas at u and v have right and left directions,
respectively (⟨⟩): r is greater than or equal to the
unit to guarantee the connectivity of the commu-
nication graph. So, there is a direct edge between
u and v in G(P ).

– Antennas at u and v have the same directions (ei-
ther ⟨⟨ or ⟩⟩): We assume w.l.o.g. that these anten-
nas have ⟨⟨ setting. Let v′ be the nearest neighbor
of v in G(P ) (v and v′ are in the same block). If u
and v′ are in the same block, there is a direct edge
between them and so δ(u, v) = 2. Otherwise, con-
sider the block B that is located to the left of the
block of v. According to the connectivity condition
(II), v′ connects to a point in block B, such that
this point has a neighbor u′ in this block with left
orientation. Since u′ lies between u and v, the dis-
tance between u and u′ is less than or equal to unit
and thus, by the previous case, u connects to point
u′. Therefore, δ(u, v) is at most 4 in this case.

– Antennas at u and v have left and right directions,
respectively (i.e., ⟩⟨): Consider the nearest neigh-
bors of u and v, and call them u′ and v′, respec-
tively. u and u′ are in a block B1, and v and v′ are
in a block B2. If B1 and B2 are two consecutive
blocks, due to the connectivity condition (II), u′
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and v′ connect to each other with a direct edge, and
hence δ(u, v) = 3. Otherwise, u′ connects directly
to a point u′′ in its right block, and v′ connects di-
rectly to a point v′′ in its left block. If u′′ and v′′

are in a common block, there is an edge between
them and δ(u, v) = 5. But if they are in two dif-
ferent blocks, we need three edges to connect them
to each other. Since at first u′′ and v′′ must con-
nect to their nearest neighbors, who have right and
left directions respectively, we can then use the first
case of the proof to connect these neighbors with
one more edge. So, δ(u, v) is at most 7 in this case.

Now, let p and q be two arbitrary points in P , and p0 =
p, p1, . . . , pt = q be the shortest link distance between p
and q in UDG(P ). Since ∥pipi+1∥ is less than or equal
to the unit, each link (pi, pi+1) either exist or is replaced
by a path of link length at most 7 in G(P). Therefore,
the communication graph G(P) is a 7-hop spanner. □

5 Local Routing for the Optimal Orientation

In the previous section, we proved that to transfer data
between two points that communicate with each other
directly in the unit disk graph, there is a path with at
most 7 hops in the resulting communication graph of
optimal orientation. Although we proved the existence
of such path, we need to provide a routing algorithm to
find it. Here, we propose a local routing algorithm for
communication graph G(P ) of the optimal orientation
of the antenna set P .
According to the orientation of antennas (left or right)

in the communication graph G(P ), each point connects
to some points located either to its left or its right.
Therefore, the direction of transfer is predetermined and
in each state we just need to choose the best neighbor of
the current point for the next step. We assume that the
neighbors of each point are sorted in their x-coordinates.
We propose Algorithm 2 to route from s to t in graph
G(P ). During the algorithm, if the orientation of the
antenna on the current point u is in the direction of the
destination, we go to the farthest neighbor of u in or-
der to close the gap to t as much as possible, and if the
orientation of the antenna located on u is in opposite
of the direction of the destination, we go to the nearest
neighbor in order to increase the distance to t the least.
To prove the correctness of the algorithm, we assume

w.l.o.g that s is to the left of t, and then show that
we will certainly reach from s to t after visiting a finite
number of points. We denote by π(s, t) the path ob-
tained by Algorithm 2. Moreover, we define the head of
a block to be the rightmost antenna with right direction
in that block.

Lemma 4 In π(s, t), each antenna with right direction,
except s and t, is the head of a block, and these heads ap-

Algorithm 2 Routing(G(P ), s, t)

input: Communication graph G(P ), point s and t
output: Routing from s to t

1: while s is not directly connected to t do
2: if the antenna on s is oriented toward t then
3: u ← farthest neighbor of s
4: Routing(G(P ), u, t)
5: else
6: u ← nearest neighbor of s
7: Routing(G(P ), u, t)

pear in the ascending order of their x-coordinates along
π(s, t).

Proof. Every antenna with left direction in π(s, t), ex-
cept t, can not see t. Therefore, we go to its nearest
neighbor, which has right direction and is therefore the
head of a block. In Algorithm 2, if the current point u is
a head, we go toward t or to the farthest neighbor of it,
say u′. Since the direction of a head is right, by the con-
nectivity condition (II), u′ is located in a block which
lies to the right of u. Now, either u′ directly connects to
t, or we go to the head of its block, whose x-coordinate
is greater than u. □

By Lemma 4, the points in π(s, t) are alternating heads
of blocks in ascending x-coordinates. Since the num-
ber of blocks is finite, the proposed routing algorithm
reaches from s to t after a finite number of steps by
the invariant property. (If it passes over t, after one
backward movement it certainly gets to t.)

5.1 Competitive Ratio of the Routing Algorithm

Here, we compare the path π(s, t), obtained by Algo-
rithm 2 on G(P ), with a shortest path between s and t
in UDG(P ) and show that Algorithm 2 can route locally
and competitively on graph G(P ). So, we first prove a
lemma.

Lemma 5 If h1, h2, h3, and h4 are four consecutive
heads in π(s, t), then ∥h1h4∥ ≥ r.

Proof. If ∥h1h4∥ < r, there is an antenna p in the block
to which h3 belongs, such that the direction of p is left
and its Euclidean distance to h1 is less than r. Thus,
there is a direct edge between h1 and p. Since h1, h2

and h3 are consecutive heads in π(s, t), in the routing
algorithm we go along the path from h1 to an antenna q
with left direction, which is located between h2 and h3,
and then go from q to h2 with a movement. We know
that ∥h1q∥ < ∥h1p∥, and that both p and q are neighbors
of h1. (The status of antennas can be illustrated as
⟨h1 · · · ⟨h2 ⟩q · · · ⟨h3 ⟩p · · · ⟨h4 .) Therefore, in the routing
algorithm, we go after h1 to its farthest neighbor which
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is not q. But, this contradicts the assumption that h1

and h2 are consecutive heads along the path, and this
completes the proof. □

Corollary 1 Since the antennas in π(s, t) have alter-
nating left and right directions, we use at most six
edges to move from h1 to h4, and after these steps,
h4 becomes at least r times closer to t than h1, i.e.,
∥h1t∥ − ∥h4t∥ ≥ r.

If the distance between two arbitrary points s and t is
in the range [(k − 1)r, kr] for a positive integer k, by
Corollary 1, after 6(k− 1) steps, the Euclidean distance
between the current point u and t becomes less than or
equal to r. On the other hand, we proved in Section 4
that for any two points u and v in G(P ) with distance
less than or equal to unit, δ(u, v) ≤ 7. We can eas-
ily generalize this result to the case when the distance
between two points is at most r. Therefore, for the cur-
rent point u and the destination point t, there is a path
with at most 7 edges connecting them, which is exactly
the path found by Algorithm 2. Therefore, for reaching
from s to t, we pass at most 6(k−1)+7 = 6k+1 edges,
and hence, |π(s, t)| ≤ 6k + 1.
In UDG(P ), by passing each edge in a shortest path

from s to t, we get closer to t by at most one unit. So,
if the distance between two arbitrary points s and t is
in the range [(k − 1)r, kr], we have δUDG(s, t) ≥ kr,
and because r is greater than or equal to unit, we have
|π(s,t)|

δUDG(s,t) ≤ (6 + 1
k ). The following theorem summarizes

the result.

Theorem 6 Let P be a set of points on a line such that
UDG(P ) is connected. Algorithm 2 is a 7-competitive
routing algorithm with respect to the UDG(P ), for the
communication graph G(P) computed by Algorithm 1.

6 Conclusion

In this paper, we studied the problem of orienting di-
rectional antennas in the symmetric model of commu-
nication, and presented an efficient linear-time dynamic
programming algorithm for finding an optimal orienta-
tion with a minimum radius in one dimension. More-
over, we showed that the induced communication graph
of the optimal orientation is a t-hop spanner, for a small
stretch factor t ≤ 7. We also presented a 7-competitive
local routing algorithm on the resulting graph.
Several interesting problems remain open. The main

question is how to extend the results of this paper to
two and higher dimensions. In particular, there is a
2-approximation algorithm for the problem (in a lim-
ited setting) in two dimensions. However, it is not yet
known whether the problem in the plane is NP-hard, or
can be solved optimally in polynomial time. Moreover,
finding routing algorithms for networks with directional
antennas in two and higher dimensions remains open.
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