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Abstract

We study the problem of Nearest-Neighbor Searching
under locational uncertainty. Here, an uncertain query
or site consists of a set of points in the plane, and
their distance is defined as distance between the two
farthest points within them. In L∞ metric, we present
an algorithm with O(n log2 n+s) expected preprocessing
time, O(n log n) space, and O(log2 n + k) query time,
where s is the total number of site points, n is the number
of sites, and k is the size of the query. We also propose
a
√
2-approximation algorithm for the L2 version of the

problem.

1 Introduction

In this paper, our focus is on Nearest-Neighbor (NN)
Searching Under Uncertainty. In the basic version of the
NN problem, one wants to preprocess a set of site points
in the plane, so that the closest one to a query point can
be found efficiently.

For a brief survey on NN searching under uncertainty,
refer to [18]. Two models of uncertainty have been
considered in the literature. In the existential model,
which we will not address, a site has a specified location,
but it appears with a given probability and otherwise
is not present at all. The model that we are interested
in is the locational model, where a site and/or a query
consists of more than one point, for example a region
or a finite set of points representing possible locations
of the uncertain point. An application of this model is
location-based services where the data is imprecise. The
distance of an uncertain query from an uncertain site is
defined as an aggregate function of distances of points
within them, such as maximum, minimum, or average
of all possible distances.

For most of this paper, d(., .) is the L∞ distance, and
sites and queries are uncertain; an uncertain site or query
consists of a finite set of possible locations in the plane,
i.e., points, and the distance between them is defined
as the maximum of all possible distances (see Figure 1).
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Figure 1: Distance of an uncertain query Q (red dots)
from an uncertain site P (blue crosses).

Throughout this paper, for simplicity of presentation,
we assume general position, which here means no two
points share their x- or y-coordinates.

Problem statement We define the distance d(P,Q)
between two compact point sets P,Q in the plane by

d(P,Q) = max
p∈P,q∈Q

d(p, q).

Given a set P = {P1, P2, ..., Pn} of n uncertain points

Pi ⊆ 2R
2

, with s =
�

Pi∈P |Pi|, construct a data struc-
ture D(P), such that queries of the form NND(P)(Q),

for Q ⊆ 2R
2

, k = |Q|, that return argmini d(Pi, Q), can
be answered efficiently.

Motivation Our definition of distance between a query
and a site as the largest separation between any two
representatives of the respective sets can be motivated
by the following slightly artificial example: Each site
represents the set of possible locations of an ambulance.
The query represents the set of possible locations of a 911
caller. The answer to the query is the ambulance that is
closest to the caller, using the worst-case combination of
the positions of the ambulance and the caller. In other
words, it minimizes the worst-case response time given
the uncertain locations.

Our results We first propose an algorithm to find the
nearest site in O(log n+ k) time, using quadratic space
and O(n2 log n+ s) expected preprocessing time. Then
we improve the space requirement to near linear by
adding a logarithmic factor to the query time and pro-
pose a data structure smoothly interpolating between
the two extremes. The nearest neighbor in L∞ metric is
also a

√
2-approximate solution for the L2 version of the
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problem. Finally, we propose a more efficient algorithm
to find a

√
2-approximate answer to the L2 version.

2 Related Work

The nearest-neighbor problem has been studied exten-
sively in the literature. A well-known approach is sub-
dividing the plane into cells, each consisting of points
with the same nearest neighbor. This subdivision of the
plane is called a Voronoi Diagram. A Voronoi diagram is
then preprocessed for point location, in order to answer
NN queries. This diagram has been extensively studied
for different types of sites such as segments or polygons,
using different metrics and also in higher dimensions [15].

NN searching under uncertainty has been studied in a
variety of settings. In the case where queries are points
but sites are uncertain, modified versions of Voronoi
Diagram are proposed. An Uncertain Voronoi Diagram
is a subdivision of space into regions, so that all the
points in each region have the same set of possible nearest
neighbors [4]. Zhang et al. propose the notion of Possible
Voronoi cell (PV-cell) [17]. The PV-cell of a site is the
region where that site has positive probability of being
the nearest neighbor. Evans et al. introduce another
version of Voronoi diagram where each cell contains those
points guaranteed to be closest to a particular site [6].

When distance from a query point to an uncertain site
is defined as the distance to the site’s farthest point, it
is equal to the Hausdorff distance from the query point
to the site, so NN searching can be done using Hausdorff
Voronoi Diagrams (HVD). Papadopoulou proves that the
size of the HVD is O(n2) where n is the total number of
vertices on the convex hulls of the sites. She provides a
plane sweep algorithm to construct it [14]. If the convex
hulls of sites are disjoint then the HVD’s size is O(n) and
can be computed in O(n log3 n) time [5]. By performing
a point-location query in the HVD, the nearest uncertain
site can be found in poly-logarithmic time.

Agarwal et al. cover different cases of uncertainty in
their work [2]. In their setting a site or query point
is specified as a probability density function (pdf) and
the goal is to find the Expected Nearest Neighbor (ENN)
which is the site with minimum expected distance to the
query. Under squared Euclidean distance, they prove
that if the pdf of each site has description complexity at
most k, the Expected Voronoi Diagram (EVD) has linear
size and can be computed in O(n log n+nk) time. Thus,
an ENN query can be answered in O(log n) using point
location in the EVD. Using rectilinear metrics and assum-
ing each site has a discrete pdf consisting of k points, they
provide an algorithm to answer queries in O(log3(kn))
time by doing a point location query. For the Euclidean
distance they construct an ε-approximation of the EVD
(ε-EVD), and the ε-approximation of the ENN (ε-ENN)
can be reported in O(log(n/ε)). In another work [1],

Agarwal et al. propose an algorithm to find those sites
that can be the NN with probability greater than a
threshold and an algorithm to report the point that has
the maximum probability of being the NN.
Many results on the NN problem use branch-and-

bound pruning techniques. These methods mostly use
R-trees to index the sites, try to prune nodes, and use
heuristics to make the process more efficient, but there
is no guarantee that it runs asymptotically faster than
linear-time brute-force algorithm, in the worst case.

In Aggregate Nearest-Neighbor Searching an aggregate
or group query consists of a finite set of points, and
distance is an aggregate function of all the distances,
such as their sum, maximum, or average. This type of
queries can be viewed as an equivalent to our variant of
uncertain queries. Dealing with sum version of aggregate
queries under Euclidean distance, Papadias et al. use
R-trees to create an index on the set of sites [12]. They
propose several empirical algorithms using this data
structure. They also provide a modification of those
algorithms to work efficiently for disk-resident queries.
In another work [13], previous algorithms are modified
to cover other variants of the aggregate NN problem
such as the sum, max, and min versions. Again, input
sites are indexed using R-trees, algorithms are evaluated
by experiments, and no worst-case analysis is provided.
To answer the aggregate-max NN query on a set of

n sites in the plane, Wang provides algorithms for L1

and L2 metrics that give exact answers in sub-linear
time [16]. For the L1 version, he builds a linear-size
data structure in O(n log n) time that answers a query
of size k in O(log n+ k) time. For L2, constructing the
data structure takes O(n log n) time and O(n log log n)

space and a query can be answered in O(k
√
n logO(1) n)

time. He also proposes another data structure for L2,
which takes O(n2+ε) time and space and guarantees
O(k log n) query time.
As an example of uncertainty for both queries and

sites, Lian et al. introduce Probabilistic Group Nearest
Neighbor (PGNN), which are aggregate NN queries in
uncertain data sets [10]. Their approach is reducing
the search space by proposing pruning methods. They
demonstrate the efficiency of their algorithm experimen-
tally, with no analysis provided. Our results are closely
related to the PGNN problem, except that we provide
preprocessing and query time analysis.

3 Exact Nearest Neighbor for L∞

First we observe that we can find the nearest neighbor
using only the axis-parallel bounding box of uncertain
sets; the exact position of points within the box are not
needed (see Figure 2). Therefore, after computing the
bounding boxes, neither preprocessing nor query time
will depend on the sizes of sites or queries.
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Figure 2: Distance of two uncertain points only depends
on their axis-aligned bounding boxes.

Lemma 1 For any two compact sets P , Q in the plane,
d(P,Q) = d(b(P ), b(Q)), where b(·) denotes the axis-
parallel bounding box of a set.

Proof. Since P ⊂ b(P ), Q ⊂ b(Q), and the distance
between sets is defined as the longest interpoint distance,
we have d(b(P ), b(Q)) ≥ d(P,Q).

Now suppose d(b(P ), b(Q)) = |px − qx|, for p ∈ b(P ),
q ∈ b(Q); p, q must lie on bounding box boundaries, for
otherwise |px − qx| can be increased. By definition of a
bounding box, there exist p� ∈ P , q� ∈ Q with p�x = px,
q�x = qx. Thus d(b(P ), b(Q)) = |p�x − q�x| ≤ d(P,Q). �

So, our problem is reduced to the nearest-neighbor
problem for axis-parallel boxes. For the remainder of
this paper, we will assume that a site or query is given
by its axis-aligned bounding box, specified by its four
coordinates. First we will define properties of a query
rectangle based on these four values.

For a given query rectangle Q(x1, x2, y1, y2), its center
is� = �(Q) = (x�, y�) = ((x1+x2)/2, (y1+y2)/2). The
width and height are defined as Δx = Δx(Q) = x2 − x1

and Δy = Δy(Q) = y2 − y1, respectively, as shown in
Figure 3. We also define Δ = Δ(Q) = |Δx−Δy| to be

Δy

Δx

Q

�

Figure 3: Center, width, and height of a query.

the absolute difference between the height and width
of Q.

Without loss of generality, we assume that width of Q
is greater than or equal to the height, so Δ = Δx−Δy ≥
0; a symmetric structure will handle the complementary
case. We partition the set of sites into left and right
subsets, named P� and Pr, based on the position of their
center relative to the vertical line through �. When

Δx < Δy, ‘right’ and ‘left’ will be replaced by ‘top’ and
‘bottom’ in all of the arguments.

Observation 1 The left edge e� = e�(P ) of any rect-
angle site P ∈ P� is sufficient to compute the distance
from the query Q; in other words, d(P,Q) = d(e�, Q).
A symmetric statement holds for Pr.

So sites can be replaced by either vertical or horizontal
segments, based on the width and height of the query,
and their dimension decreases by one. See Figure 4. Next
we explain how to effectively decrease the dimension of
a query by replacing it with a point.

Lemma 2 The nearest site in P� to the rectangle Q, is
the same as the nearest site to its center � shifted by
Δ/2 to the right.

Proof. First, we compute the distance of a site P ∈ P�

from a query Q using the query’s center, width, and
height:

d(P,Q) = d(el, Q) = max(dx(el, Q), dy(el, Q))

= max(dx(el,�) +
Δx

2
, dy(el,�) +

Δy

2
).

We assumed Δx ≥ Δy, thus

d(P,Q) =
Δy

2
+ max(dx(el,�) +

Δ

2
, dy(el,�)).

Since el is to the left of �, if we shift � to the right
by Δ/2, to the point �� = (x� +Δ/2, y�), then

d(P,Q) =
Δy

2
+ max(dx(el,��), dy(el,��))

=
Δy

2
+ d(el,��)

So, the distance from Q differs from the distance from ��

by Δy/2. This proves that the nearest site to the rect-
angle Q among those in P�, is the same as the nearest
one to the point ��. �

Now we query in P� and Pr separately, using an appro-
priately shifted center of Q, to find the nearest site in
each set. Then we can compare their distance from Q
to find the real nearest neighbor.

Theorem 3 The nearest site to a query Q can be found
in O(log n) time, using O(n2) space and O(n2 log n) ex-
pected preprocessing time.

Proof. Given a set of n vertical segments, we need
the closest to a point. Assuming general position, the
segments are pairwise disjoint and our definition of the
distance (a variant of the Hausdorff metric) satisfies the
axioms of an Abstract Voronoi Diagram [11]. Therefore
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�
P� Pr

Figure 4: Dividing the sites into sets P� and Pr. The
highlighted edges are sufficient for measuring the dis-
tance from the query.

the diagram has linear size and can be constructed in
O(n log n) expected time using linear space [8]. We then
preprocess it for logarithmic-time point location.
We focus on finding the nearest site in P�. A site

in P� is a site with the x-coordinate of its center smaller
than �x. We presort the sites in P according to the
x-coordinate of their centers and construct the Voronoi
diagram of every prefix, for a total of n diagrams with
total size O(n2), in expected time O(n2 log n). When
answering a query, we binary search using �x to find the
Voronoi diagram corresponding to P� and query in the
diagram with �� to find the nearest site. We repeat this
process for Pr, then compare the results in constant time
and return the better of the two answers. Answering a
query involves a constant number of binary searches and
point locations, so the query time is O(log n). �

Theorem 4 The nearest site to a query Q can be found
in O(log2 n) time, using O(n log n) space and O(n log2 n)
expected preprocessing time.

Proof. To answer a query with center �, we need to
find the nearest left (right) edge of sites the x-coordinate
of whose center is less (greater) than �x, which is a prefix
(suffix) of sites sorted by their centers. This problem is an
example of a decomposable searching problem introduced
by Bentley and Saxe [3], i.e., to find NN in some set,
we can decompose it into smaller sets, search for NN in
each subset, then compare the results to find the real
NN.

Using this property we can improve the preprocessing
time, by creating a hierarchical data structure of sites
sorted by x-coordinate of their centers. We construct
a binary tree where each internal node stores a list of
sites in its subtree, which is equivalent to sites whose
centers belong to some canonical range of x values. At
each node we construct the Voronoi diagram of this list,
separately for the left and right edges. Given queryQ, we
perform a query using its center, to obtain the O(log n)
nodes whose subtrees are a decomposition of P� and Pr.
We perform a query with corresponding �� in each of
these Voronoi diagrams, and compare them to find the

real nearest neighbor. This way the preprocessing takes
O(n log2 n) expected time and O(n log n) space, but the
query time will be O(log2 n). �

If we replace the binary tree by an m-ary one in
the data structure, for any 2 ≤ m ≤ n, we obtain a
trade-off between query and preprocessing costs. Each
node has m children; for 1 ≤ i ≤ m, we store Voronoi
diagram of sites of the union of the subtrees of its first
(and last) i children, O(m) diagrams at each node. A
query takes O(logm n logm) = O(log n) time to find
those O(logm n) nodes that cover P� or Pr (at most one
of each at each tree level), and we need to do point
location in O(logm n) nodes and each takes O(log n).
So the total query time is O(logm n log n). Each site is
stored at O(logm n) nodes, and at each node there are
O(m) copies of it. So the size of the data structure is
O(mn logm n), and it takes O(mn logm n log n) expected
time to construct it. If we set m = n1/δ, for any 1 ≤ δ ≤
log n, we obtain a data structure of size O(δn1+1/δ) in
O(δn1+1/δ log n) expected preprocessing time and each
query takes O(δ log n) time.

4 Approximate Nearest Neighbor for L2

In the Euclidean metric, finding the exact answer to
nearest-neighbor problem under uncertainty is more com-
plicated than in rectilinear metric. In order to obtain fast
queries, we consider approximating the answer. In the
case where the query is uncertain (aggregate queries), but
each site is a point, Li et al. provided a

√
2-approximation

answer [9]. We generalize this result for the version of
the problem where both queries and sites are uncertain.
In the following theorem, we show that an uncertain

query Q can be represented by a single point �, the cen-
ter of its minimum enclosing circle, so that the distance
of Q from the site nearest to � is an approximation of
the distance to the true nearest neighbor.

Theorem 5 When querying a set of uncertain sites with
an uncertain query Q, if C is the minimum enclosing
circle of Q with radius r and with center at �, P the
nearest site to �, and P ∗ the nearest site to Q, then
l = d(Q,P ) will be a

√
2-approximation of l∗ = d(Q,P ∗).

Proof. Let d and d∗ be the distance of � from P and
P ∗, respectively. Let z be the farthest point in P ∗ from
� (so that d(z,�) = d∗) and AB be the diameter of C
orthogonal to �z. Connect z to � and extend it so that
it hits the circle at E (see Figure 5). By the triangle
inequality,

l = d(Q,P ) ≤ d+ r.

Since C is a minimum enclosing circle, there should be a
query point q on � AEB, and ∠z� q ≥ π/2. Therefore,

d(q, z) ≥
�

d∗2 + r2.
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Figure 5: The nearest site to the center of an aggregate
query is an approximate nearest neighbor.

By definition

l∗ = d(Q,P ∗) ≥ d(q, z),

and since P is the nearest site to �

d∗ ≥ d.

As a result,

l∗ ≥
�

d2 + r2.

If both d and r are equal to zero, since l ≤ d + r, l is
also zero, so l ≤

√
2l∗ holds. Otherwise,

√
d2 + r2 �= 0

and

l ≤ d+ r√
d2 + r2

l∗ ≤
√
2l∗.

�

The challenge here is finding the nearest uncertain
site to the point �. Since this distance is equivalent to
Hausdorff distance we can find the nearest site by per-
forming a point location query in the Hausdorff Voronoi
Diagram which takes poly-logarithmic time. The prepro-
cessing time and the size of the diagram depends on how
separated the sites are [5, 14]. In the case where convex
hulls of uncertain points are disjoint, the diagram can
be created in O(s log3 s) time using linear space [7].

5 Conclusion

We studied NN searching with uncertain sites and queries.
Under L∞ metric, we provided two algorithms to find the
exact NN. There is a trade-off between the preprocessing
and query time as shown in Table 1. One obvious open
problem is to establish a lower bound on the query time
when using, say, linear space.

For L2 version of the problem, we presented a
√
2-

approximation algorithm. Is there is an algorithm with
sublinear query time to find the exact nearest neighbor?
Moreover, there is no lower bound on query time for the
Euclidean metric.

Preproc. time DS Size Query time

O(n2 logn+ s) O(n2) O(logn+ k)
O(n log2 n+ s) O(n logn) O(log2 n+ k)
O(mn logm n logn+ s) O(mn logm n) O(logm n logn+ k)

O(δn1+1/δ logn+ s) O(δn1+1/δ) O(δ logn+ k)

Table 1: The trade-off between preprocessing and query
time.
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