
CCCG 2017, Ottawa, Ontario, July 26–28, 2017

The most-likely skyline problem for stochastic points

Akash Agrawal∗ Yuan Li† Jie Xue‡ Ravi Janardan§

Abstract

For a set O of n points in Rd, the skyline consists of the
subset of all points of O where no point is dominated by
any other point of O. Suppose that each point oi ∈ O
has an associated probability of existence pi ∈ (0, 1].
The problem of computing the skyline with the maxi-
mum probability of occurrence is considered. It is shown
that in Rd, d ≥ 3, the problem is NP-hard and that
the desired skyline cannot even be well-approximated
in polynomial-time unless P = NP . In R2, an optimal
O(n log n)-time and O(n)-space algorithm is given.

1 Introduction

In Rd, a point u dominates a point v if each coordinate of
u is at least as large as the corresponding coordinate of
v, with strict inequality in at least one dimension. The
skyline of a set of points consists of the subset of all
points where no point is dominated by any other point
of the set. (See Figure 1a.) The skyline (or Pareto set
or maximal vector) is useful in multi-criteria decision-
making as it yields a set of viable candidates for further
exploration. It has been well-studied in the database,
optimization, and computational geometry literature;
e.g., [3, 5, 6].

We investigate skylines in a setting where there is
uncertainty associated with the existence of the points.
Such stochastic datasets can model, for instance, experi-
mental observations with associated confidence values or
physical entities that may not always be available (e.g.,
sensors whose activity level depends on battery life or
hotel rooms where availability depends on demand).

We consider the problem of computing the skyline
that has the greatest probability of being present, hence
the one that the user is most likely to encounter and
explore further. We call this the most-likely skyline.
Our results include an optimal algorithm in the plane
and hardness results in higher dimensions.

∗Dept. of Computer Science and Engg., Univ. of Minnesota-
Twin Cities, akash@umn.edu

†Dept. of Computer Science and Engg., Univ. of Minnesota-
Twin Cities, lixx2100@umn.edu

‡Dept. of Computer Science and Engg., Univ. of Minnesota-
Twin Cities, xuexx193@umn.edu

§Dept. of Computer Science and Engg., Univ. of Minnesota-
Twin Cities, janardan@umn.edu

1.1 Problem formulation, contributions, and related
work

Let O = {o1, o2, . . . , on} be a set of points in Rd, where
xk(oi) denotes the kth coordinate of oi. Point oi domi-
nates oj (i.e., oi � oj) if xk(oi) ≥ xk(oj) for 1 ≤ k ≤ d,
with strict inequality in at least one dimension.

Suppose that each oi ∈ O has an associated real pi ∈
(0, 1]. (The pi’s are known and independent of each
other.) We call pi (resp. qi = 1−pi) the existence (resp.
non-existence) probability of oi and call O a stochastic
set.

Let O� ⊆ O, where no point of O� dominates another
of O�; thus, O� itself is the skyline of O�. Now, when is
O� also a skyline of O? Let F (O�) ⊆ O\O� be the points
that are not dominated by any point of O�; intuitively,
these are the points “above” the staircase contour de-
fined by O�. Clearly, as long as no point of F (O�) is
present, O� is also the skyline of O. (The points of
O \O� that are dominated by one or more points of O�,
i.e., the ones “below” the staircase, do not affect the
skyline property of O�.) Thus, for O� to be a skyline
of O, each point of O� must be present and no point of
F (O�) should be present. So, the probability that O� is
a skyline of O is PrSky(O�) =

�
oi∈O� pi ×

�
oi∈F (O�) qi.

Our problem is to compute a skyline O� of O for which
PrSky(O�) is maximum. This skyline, called the most-
likely skyline of O, is denoted by MLSky(O). (See Fig-
ure 1b and Figure 1c for an example.)

Note that the introduction of uncertainty makes our
problem challenging as there might be an exponential
number of candidate skylines—as many as one for each
possible subset of existent points. By contrast, in the
non-stochastic setting, there is exactly one skyline for a
given set of points.

We make three contributions to the most-likely sky-
line problem. We prove that computing such a skyline
is NP-hard in R3, hence also in Rd for d > 3 (Sec-
tion 2). Furthermore, we prove that the most-likely
skyline in Rd (d ≥ 3) cannot even be well-approximated
in polynomial-time unless P = NP (Section 3). We
complement these results with an O(n log n)-time and
O(n)-space algorithm to compute the most-likely sky-
line in R2 (Section 4), which is optimal in the compari-
son model due to the known Ω(n log n) lower bound for
the non-stochastic skyline problem [5].

To our knowledge, this paper is the first to con-
sider skylines in the unipoint stochastic model, where

78

29th Canadian Conference on Computational Geometry, 2017

x

y

(a)

o1
0.1

o2
0.4

o3
0.4

x

y

(b)

O� F (O�) PrSky(O�)

∅ {o1, o2, o3} (1− 0.1)× (1− 0.4)× (1− 0.4) = 0.324
{o1} {o2, o3} 0.1× (1− 0.4)× (1− 0.4) = 0.036
{o2} {o1} (1− 0.1)× 0.4 = 0.36
{o3} {o1, o2} (1− 0.1)× (1− 0.4)× 0.4 = 0.216
{o1, o2} ∅ 0.1× 0.4 = 0.04
{o1, o3} {o2} 0.1× (1− 0.4)× 0.4 = 0.024

(c)

Figure 1: (a) Skyline of a conventional (i.e., non-stochastic) point-set, with skyline points circled. (b) A set, O, of
stochastic points and associated existence probabilities. (c) Computing the most-likely skyline for the example in (b);
here it consists of just {o2}. (Note that if p2 is decreased to 0.2 and the example is re-worked, then the most-likely
skyline is ∅, with probability 0.432.)

the points have fixed locations and associated exis-
tence probabilities. An alternative setting is the mul-
tipoint stochastic model, where each point is described
by discretely-many locations, with associated existence
probabilities, or by a continuous probability distribu-
tion. Examples of work here include computing sky-
lines whose points have existence probabilities above a
threshold [7], computing for each dataset point (or for a
query point) the probability that it is not dominated by
any other point [1, 2], computing stochastic skyline op-
erators to find a minimum set of candidate points with
respect to a certain scoring function [9], etc.

2 NP-Hardness of computing the most-likely skyline
in Rd, d ≥ 3

We give a polynomial-time reduction from the mini-
mum ε-ADR problem in R3, which is known to be NP-
hard [4], to the most-likely skyline problem in R3. (Here
ADR stands for “Approximately Dominating Represen-
tatives” [4].)

An instance of the ε-ADR problem in R3 consists of
a set, S, of n (non-stochastic) points and a real ε > 0.
An ε-ADR of S is a set S� ⊆ S such that every s ∈ S is
dominated by some s� ∈ S� when s� is boosted by ε, i.e.,
(1+ ε) · s� � s. The minimum ε-ADR problem seeks the
smallest such set S�.

The reduction: Given any ε-ADR instance in R3,
we compute the (conventional) skyline, Sky(S), of S and
boost its points by ε to get a set Ŝ. To each point in
Sky(S) (resp. Ŝ) we assign an existence probability β
(resp. α), where 1/3 < α < 1/2 < β < 1 and β(1−α) <

α; e.g., α = 0.4 and β = 0.6. The set S̄ = Sky(S) ∪ Ŝ
is an instance of the most-likely skyline problem in R3.
The reduction takes polynomial time. We observe the
following:

(i) The probability that the skyline of S̄ is empty
is the probability that no point of S̄ exists, i.e., (1 −
β)K(1 − α)K , where K = |Sky(S)| = |Ŝ|. Since β >
1/2, the probability of the empty skyline is less than
βK(1−α)K . The latter is the probability of that skyline
of S̄ where the points of Sky(S) exist and those of Ŝ do
not. Thus, the most-likely skyline of S̄ is non-empty.

(ii) Consider the skyline of S̄ that consists of just
Sky(S). Suppose that a point s ∈ Sky(S) is replaced
by a point ŝ ∈ Ŝ that dominates it. The probability
expression for Sky(S) contains terms β and 1−α, since
s is present in it and ŝ is not. In the probability expres-
sion for the new skyline, the term 1−α is replaced by α,
since ŝ is present and the term β is excluded since s is
not present. (The term β is not replaced by 1− β since
s is dominated by ŝ. Indeed, ŝ may also dominate other
points of Sky(S), so the term β for each such point is
also excluded.) Since β(1−α) < α, the new skyline has
a higher probability than the previous skyline of S̄. The
replacement process is continued until a skyline consist-
ing of only points drawn from Ŝ is obtained. Since each
replacement yields a skyline of higher probability, it fol-
lows that the most-likely skyline of S̄ consists of only
points from Ŝ. Let k ≤ K be the number of such points
from Ŝ.

(iii) The points of Ŝ are mutually non-dominating
since their pre-images are in Sky(S). Thus, each point
of Ŝ that is not in the most-likely skyline of S̄ con-

79

CCCG 2017, Ottawa, Ontario, July 26–28, 2017

tributes (1− α) to the probability of this skyline, so its
probability is αk(1 − α)K−k = (α/(1 − α))k(1 − α)K .
Since α < 1/2, we have α/(1− α) < 1. Since (1− α)K

is fixed for a given set S and the skyline under consid-
eration has maximum probability, it follows that k is
minimum.

Suppose that there is a polynomial-time algorithm for
the most-likely skyline problem in R3. We generate S̄
and compute its most-likely skyline, all in polynomial
time. These skyline points, which are a subset of Ŝ of
some minimum size k, dominate the points of Sky(S),
hence also the points of S. Therefore, the pre-images of
these skyline points in S (i.e., prior to boosting) are an
ε-ADR of S of minimum size k and can be computed
in polynomial time. This contradicts the known NP-
hardness of the ε-ADR problem in R3 and yields the
following theorem.

Theorem 1 The most-likely skyline problem in Rd,
d ≥ 3, is NP-hard.

3 Inapproximability in Rd, d ≥ 3

Let A be an algorithm that computes a skyline whose
probability is greater than c times the probability of
the most-likely skyline, 0 < c < 1. We call A a c-
approximation algorithm. Our first result is based on
the reduction in Section 2.

Theorem 2 For c > 1/2, there exists no polynomial-
time c-approximation algorithm, A, for the most-likely
skyline problem in Rd, d ≥ 3, unless P = NP.

Proof. We show that A cannot exist for c = α/(1−α),
where 1/3 < α < 1/2. (Recall that α is the existence
probability assigned to each point of Ŝ in Section 2.)
The theorem follows since α > 1/3 implies c > 1/2. (A
similar result is stated in [8] for the most-likely convex
hull problem.)

Suppose A exists for c = α/(1−α). We run A on S̄ =
Sky(S) ∪ Ŝ. The probability of the resulting skyline is
greater than α/(1−α) times the probability of the most-
likely skyline of S̄, i.e., greater than (α/(1−α)) ·(αk(1−
α))K−k) = αk+1(1 − α)K−(k+1). Assume without loss
of generality that the computed skyline contains points
from Ŝ only. (If it contains points of Sky(S), then each
of these can be replaced, in polynomial time, by the
corresponding boosted point in Ŝ and the probability of
the resulting skyline only increases.)

How many points does the computed skyline have?
Note that a skyline with k+1 points of Ŝ has probability
αk+1(1−α)K−(k+1). For each additional point of Ŝ that
is included in the skyline, the probability gets multiplied
by a factor α/(1−α), which is less than 1 since α < 1/2.
It follows that the skyline computed byA has fewer than
k+1 points of Ŝ. Thus, the ε-ADR of S corresponding

to the pre-images of the points of the skyline computed
by A has fewer than k+1 points. This ε-ADR of S must
be a minimum ε-ADR of S, since the latter has size k.
This yields a polynomial-time algorithm for computing
a minimum ε-ADR, which is not possible unless P =
NP . �

We can use Theorem 2 and the notion of “product
composability” to show that, for any δ > 0, there is

not even a polynomial-time 2−O(n(1−δ))-approximation
algorithm for the most-likely skyline problem in Rd, d ≥
3, unless P = NP .

An optimization problem is product composable [8] if
any given set of problem instances I1, . . . , Ik can be com-
bined to yield a new instance I∗ whose objective func-
tion is expressible as the product of the objective func-
tions of I1, . . . , Ik. We require that |I∗| = �k

j=1 |Ij |,
that I∗ is constructible in time polynomial in |I∗|, and
that there exists a polynomial-time computable bijec-
tion between the set of feasible solutions of I∗ and those
of I1, . . . , Ik.

The following lemma relates product composability
to inapproximability.

Lemma 3 ([8]) If a maximization problem of size n is
product composable and cannot be approximated within
a constant c < 1 in polynomial time, then it has no

polynomial-time 2−O(n(1−δ))-approximation algorithm,
for any δ > 0.

A proof of this lemma can be found in Appendix G of [8]
(full version).

Intuitively, the lemma is proved by showing that the

existence of a 2−O(n(1−δ))-approximation algorithm to-
gether with product composability would imply the ex-
istence of a c-approximation algorithm. Recall that
Theorem 2 has established that, for 1/2 < c < 1, no c-
approximation algorithm exists for the most-likely sky-
line problem, unless P = NP . In fact, the proof of
Theorem 2 shows that this is true even for the subset of
instances consisting of the set S̄ = Sky(S) ∪ Ŝ and the
associated probabilities, as defined in Section 2.

So it suffices to show that the most-likely skyline
problem consisting of instances S̄ = Sky(S) ∪ Ŝ and
the aforementioned probabilities is product composable.
Specifically, we form the instances I1, . . . , Ik by parti-
tioning S̄ using the k points on its most-likely skyline.

Let Ŝ� = {ŝ1, . . . , ŝk} ⊆ Ŝ be the points on the
most-likely skyline of S̄, sorted by non-increasing x1-
coordinates. For each ŝi ∈ Ŝ�, we define two sets Si

and Ŝi. Si contains points sj ∈ Sky(S) such that
ŝi � sj , ŝl � sj for l < i and either (1 + ε) · sj = ŝi or

(1 + ε) · sj /∈ Ŝ�. Ŝi contains the boosted points of Si.

For 1 ≤ i ≤ k, let Ii = S�
i = Si ∪ Ŝi. (See Figure 2.)

It is easy to verify that I1, . . . , Ik can be combined to
form a new instance, I∗, in polynomial-time such that,

80

29th Canadian Conference on Computational Geometry, 2017

x2

x1

I1

I2

I3

ŝ1

ŝ2

ŝ3

Figure 2: Example of a partition of S̄ to form the prob-
lem instances I1, I2, and I3. The points in Sky(S) are
represented by crosses (×) and the boosted points, i.e.,
points in Ŝ, are represented by disks (•). Points on the
most-likely skyline are circled.

given the most-likely skyline for I1, . . . , Ik, the most-
likely skyline for I∗ can be computed in polynomial-
time, and vice-versa. This establishes product compos-
ability. Lemma 3 now yields the following result.

Theorem 4 For any δ > 0, there is no polynomial-time

2−O(n(1−δ))-approximation algorithm for computing the
most-likely skyline of n stochastic points in Rd, d ≥ 3,
unless P = NP.

Finally, we note that there is a simple, but uninterest-
ing, polynomial-time 2−n-approximation algorithm for
the most-likely skyline problem: Simply compute the
skyline of the points of S whose existence probability is
more than 1/2. (A similar observation appears in [8] for
the most-likely convex hull problem.)

4 An efficient algorithm in R2

We now describe an algorithm to compute the most-
likely skyline, MLSky(O), for a set O of n points, in R2.
Our algorithm runs in O(n log n) time and O(n) space,
which is optimal in the comparison model.

We assume w.l.o.g. that all points of O are in the
first quadrant and that no two points have the same x1-
or x2-coordinate. Let the points of O be o1, o2, . . . on,
in decreasing order of their x1-coordinates. For conve-
nience, we augment O with dummy points o0 = (∞, 0)
and on+1 = (0,∞), with p0 = pn+1 = 1. The proof of
the following lemma is fairly easy, hence omitted.

Lemma 5 For any subset O� of O, O� = MLSky(O) iff
O� ∪ {o0, on+1} = MLSky(O ∪ {o0, on+1}).

Based on Lemma 5, we augment the input set with
o0 and on+1, and, hereafter, we will focus on finding the
most-likely skyline for {o0, o1, . . . , on, on+1}. For nota-
tional convenience, let Oi = {o0, o1, . . . , oi}.

We sweep a vertical line from right to left over O,
stopping at each point oi. At oi we compute the most-
likely skyline of Oi subject to the constraint that oi
belongs to this skyline. We denote this optimal sky-
line by S(oi). We initialize S(o0) = {o0} and report
S(on+1)− {o0, on+1} as MLSky(O).

Let F (S(oi)) be the set of points of Oi \ S(oi) that
are not dominated by any points in S(oi). Then, the
probability of S(oi) being the skyline of Oi is

PrSky(S(oi)) =
�

ok∈S(oi)

pk ×
�

ok∈F (S(oi))

qk.

Let oj be the point in S(oi) with largest x2-coordinate
smaller than x2(oi) and let R(oi, oj) = (x1(oi), x1(oj))×
(x2(oj),∞). (Figure 3.) Let FR(S(oi)) be the subset of
F (S(oi)) lying in R(oi, oj). Then,

PrSky(S(oi)) = pi ×


 �

ok∈FR(S(oi))

qk ×
�

ok∈(S(oi)\{oi})
pk ×

�

ok∈(F (S(oi))\FR(S(oi)))

qk


 .

Thus, we can write

PrSky(S(oi)) = pi × scoreoi
(oj),

where scoreoi (oj) is the expression inside the large
parentheses in the above equation.

x

R(oi, oj)

S(oi)

oi

oj

y

Figure 3: Illustrating S(oi) and R(oi, oj). (Dummy
points o0 and on+1 are not shown.)

Since pi is fixed for oi and PrSky(S(oi)) is maxi-
mum, it follows that scoreoi (oj) must be maximum. For
the given pair (oi, oj), the first term in scoreoi (oj), i.e.,
(

�
ok∈FR(S(oi))

qk), is fixed. Thus, for scoreoi
(oj) to be maxi-

mum, the product of the second and third terms must
be maximum. This product is nothing but the proba-
bility of the most-likely skyline of Oj subject to the con-
straint that oj belongs to the skyline, i.e., PrSky(S(oj)).
Hence, scoreoi (oj) = (

�
ok∈FR(S(oi))

qk)× PrSky(S(oj)).

81

CCCG 2017, Ottawa, Ontario, July 26–28, 2017

Thus the recurrence for S(oi) is:

S(oi) =
�
{oi}, if i = 0,

{oi} ∪ S(oj), otherwise,

where oj = argmax
oj∈Oi−1;

x2(oi)>x2(oj)

{scoreoi
(oj)}.

This recurrence leads naturally to a dynamic pro-
gramming algorithm that can be implemented easily to
run in O(n2) time, where the run time is dominated
by time to maintain the first term, i.e., (

�
ok∈FR(S(oi))

qk), in

scoreoi
(oj) for all relevant pairs (oi, oj). The run time

can be improved to O(n log n) through a more careful
approach, as follows.

When the sweep is at oi, we will, for the
sake of brevity, refer to (

�
ok∈FR(S(oi))

qk), scoreoi
(oj), and

PrSky(S(oj)) as the R-value, S-value, and P -value of
oj , respectively. Note that the S-value of oj is the prod-
uct of the R-value and the P -value of oj . Note also that
the R-value and S-value of oj depend on oi, too, but
since we refer to these when the sweep is at oi, we omit
the reference to oi. (Similarly, if the sweep is later at
some other point.)

Just after oi is processed in the right-to-left sweep,
let o be some point of O for which we wish to compute
S(o). Let oj be any point of O to the right of and below
oi. Then, if o is above oj then oi will be in the rectangle
R(o, oj) and so qi will need to be included in the R-value
of oj when the sweep reaches o. Thus, when we have
finished processing oi, we preemptively multiply by qi
the R-value of each oj to the right of and below oi. All
such points oj would have already been encountered in
the sweep and their y-coordinates will lie in the range
[0, x2(oi)), so the multiplication can be done for all oj
in this range efficiently by grouping them into a small
number of sets. This observation along with a suitable
data structure is the key to realizing the improved run
time.

Let D be a data structure on O which supports the
following operations when the sweepline is at oi.

• FindMax S -value(oi): Returns the maximum of
the S-values associated with the points whose y-
coordinates are in the range [0, x2(oi)), along with
the corresponding point oj .

• Set P -value(oi, µ): Sets the P -value of oi to µ. (In
our algorithm, µ will be pi times the S-value re-
turned by FindMax S -value(oi), which is executed
just before Set P -value(oi, µ).)

• RangeMult R-value(oi): Multiplies by qi the R-
values of the points whose y-coordinates are in the
range [0, x2(oi)).

Note that the range [0, x2(oi)) used in
FindMax S -value(oi) and RangeMult R-value(oi)
may include points that are below and to the left of oi,
hence have not yet been seen in the sweep. However,
D is set up so that the P -value (hence the S-value) of
any point that has not yet been seen in the sweep is
zero. Thus, such points are effectively ignored when
the sweep is at oi. This approach obviates the need to
make D dynamic.

In Section 4.1 we show that D can be implemented so
that it supports the above operations in O(log n) time
using O(n) space. Given this it should be clear that the
algorithm runs in O(n log n) time and O(n) space as it
involves doing at each point of oi ∈ O (other than at
o0), one FindMax S -value(oi), one Set P -value(oi, µ),
and one RangeMult R-value(oi) operation, in that or-
der. (After each FindMax S -value(oi), S(oi) is updated
by including oi in S(oj).) This leads to the following
conclusion.

Theorem 6 The most-likely skyline of a set of n
stochastic points in R2 can be computed in O(n log n)
time using O(n) space.

4.1 Implementing the data structure D
We implement D as a 1-dimensional range tree, i.e., a
balanced binary search tree where the x2-coordinates of
the points of O are stored at the leaves, in increasing
order from left to right. We maintain several fields at
the nodes of D, whose meanings are defined relative to
the position of the sweep at the current point oi.

During the sweep, we need to keep track of the R-
value of each point oj that is to the right of and below oi.
Rather than doing this explicitly for each such oj , which
would be expensive, we accumulate the R-value for oj
as the product of certain real numbers stored at the leaf
containing oj and the ancestors of this leaf. Specifically,
let prod(v) be a real-valued field at any node v. Then
the R-value of oj (relative to the current position of the
sweep at oi) is the product of the prod(·) fields at the
leaf containing oj and its ancestors. (Note that when
the sweep is at oi, the R-value is irrelevant for points
that are to the right of and above oi, and undefined for
points that are to the left of oi.) We initialize prod(v)
to 1 for all nodes of D.

At each leaf w, besides prod(w), we store three addi-
tional fields pt(w), pval(w), and val(w). Here pt(w) is
the point whose x2-coordinate is stored at w, pval(w)
is the P -value of the point if it has already been
seen in the sweep and zero otherwise, and val(w) is
prod(w)×pval(w). We initialize pval(w) to 1 for the leaf
w corresponding to o0 and to zero for all other leaves.

At each non-leaf v, besides prod(v), we store two addi-
tional fields val(v) and pt(v), whose meanings are as fol-
lows: Let D(v) be the subtree of D rooted at v. Among

82

29th Canadian Conference on Computational Geometry, 2017

the leaves of D(v), let w be the one for which the prod-
uct of pval(w) and the prod(·) fields at w and its ances-
tors, up to and including v, is maximum. Then val(v)
stores this maximum product and pt(v) equals pt(w).
Thus the maximum S-value among the leaves in D(v) is
the product of val(v) and the prod(·) fields at the proper
ancestors of v. (Note that any leaf in D(v) correspond-
ing to a point that has yet to be seen in the sweep cannot
realize the maximum product as its pval(·) field is zero.)

As we will see below, when searching downwards in D
during any of the aforementioned operations, if we are at
a non-leaf node v then we will multiply the prod(·) field
and the val(·) field of each child of v by prod(v) and
then reset prod(v) to 1. This ensures that (a) at any
node on the search path, the maximum S-value among
the leaves in its subtree is equal to the node’s val(·), and
(b) the value that was originally in prod(v) will continue
to be applied to the points in the subtree of each of v’s
children. This as-needed, lazy approach to propagating
the values in the prod(·) fields allows us to implement
the operations efficiently.

We now describe how to do the operations on D.

• FindMax S -value(oi): We search downwards in D
with x2(oi) and identify a set, C, of canonical nodes,
as follows: Whenever the search at a node v goes
to the right child, we include the left child v� in C.
Thus, the leaves of the D(v�)’s yield a grouping of
the points of O lying in the range [0, x2(oi)) into
O(log n) subsets.

During the search down D, when we are at a non-
leaf node v, we update prod(u) to prod(u)×prod(v)
(resp. val(u) to val(u) × prod(v)) for each child u
of v, and then reset prod(v) to 1. Finally, we return
the maximum of the val(v�)’s, taken over all nodes
v� in C.

• Set P -value(oi, µ): We search downwards in D
with x2(oi) to find the leaf w containing oi. At each
non-leaf node v in the search, we update prod(u) to
prod(u)×prod(v) (resp. val(u) to val(u)×prod(v))
for each child u of v, and then reset prod(v) to 1.

At w, we set pt(w) to oi, prod(w) to 1, and both
pval(w) and val(w) to µ. We then walk back up
D towards the root and, at each node v visited,
we update val(v) to the larger of the val(·) of its
children and update pt(v) accordingly.

• RangeMult R-value(oi): We search downwards in
D with x2(oi) and identify the set C of canonical
nodes, as we did in FindMax S -value(oi). At each
non-leaf node v in the search, we update prod(u) to
prod(u)×prod(v) (resp. val(u) to val(u)×prod(v))
for each child u of v, and then reset prod(v) to 1.
Next, for each node v� in C, we update prod(v�) to
prod(v�)×qi. Finally, starting at the lowest node in

C we walk back up D towards the root and, at each
node v visited, we update val(v) to the larger of the
val(·) of its children and update pt(v) accordingly.

It should be evident from the preceding discussion
that D implements the operations correctly in O(log n)
time apiece and uses O(n) space.

5 Conclusion

Given a set of points in Rd, where each point has a
fixed probability of existence, we have considered the
problem of computing the skyline that has the greatest
probability of existing, i.e., the most-likely skyline. For
d > 2, we have shown that the problem is NP-hard
and, moreover, cannot even be well-approximated unless
P = NP . For d = 2, we have given an optimal algorithm
which runs in O(n log n) time and uses O(n) space.

Acknowledgement

The research of the first author was supported, in part,
by a Doctoral Dissertation Fellowship from the Gradu-
ate School of the University of Minnesota.

References

[1] P. Afshani, P. Agarwal, L. Arge, K. Larsen, and
J. Phillips. (Approximate) uncertain skylines. In Proc.
14th Intl. Conf. on Database Theory, pages 186–196,
2011.

[2] M. Atallah, Y. Qi, and H. Yuan. Asymptotically ef-
ficient algorithms for skyline probabilities of uncertain
data. ACM Trans. on Database Sys., 36(2):1–28, 2011.

[3] S. Börzsöny, D. Kossmann, and K. Stocker. The skyline
operator. In Proc. 17th Intl. Conf. on Data Engineering,
pages 421–430, 2001.

[4] V. Koltun and C. H. Papadimitriou. Approximately
dominating representatives. Theoretical Computer Sci-
ence, 371(3):148–154, 2007.

[5] H.-T. Kung, F. Luccio, and F. P. Preparata. On finding
the maxima of a set of vectors. J. ACM, 22(4):469–476,
1975.

[6] C. Papadimitriou and M. Yannakakis. Multiobjective
query optimization. In Proc. 20th ACM Symp. on Prin-
ciples of Database Sys., pages 52–59, 2001.

[7] J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic
skylines on uncertain data. In Proc. 33rd Intl. Conf. on
Very Large Data Bases, pages 15–26, 2007.

[8] S. Suri, K. Verbeek, and H. Yıldız. On the most likely
convex hull of uncertain points. In Proc. 21st European
Symposium on Algorithms, pages 791–802. 2013. (Full
version at: https://goo.gl/fFlFbS).

[9] W. Zhang, X. Lin, Y. Zhang, M. Cheema, and
Q. Zhang. Stochastic skylines. ACM Trans. on
Database Sys., 37(2):14, 2012.

83

