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Rep-cubes: Unfolding and Dissection of Cubes
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Abstract

Last year, a new notion of rep-cube was proposed. A
rep-cube is a polyomino that is a net of a cube, and it
can be divided into some polyominoes such that each of
them can be folded to a cube. This notion was inspired
by the notions of polyomino and rep-tile, which were in-
troduced by Solomon W. Golomb. It was proved that
there are infinitely many distinct rep-cubes. In this pa-
per, we investigate this new notion and obtain three new
results. First, we prove that there does not exist a reg-
ular rep-cube of order 3, which solves an open question
proposed in the paper. Next, we enumerate all regular
rep-cubes of order 2 and 4. For example, there are 33
rep-cubes of order 2; that is, there are 33 dodecominoes
that can fold to a cube of size

√
2 ×

√
2 ×

√
2 and each

of them can be divided into two nets of unit cube. Sim-
ilarly, there are 7185 rep-cubes of order 4. Lastly, we
focus on pythagorean triples that consist of three pos-
itive integers (a, b, c) with a2 + b2 = c2. For each of
these triples, we can consider a rep-cube problem that
asks whether a net of a cube of size c × c × c can be
divided into two nets of two cubes of size a× a× a and
b× b× b. We give a partial answer to this natural open
question by dividing into more than two pieces. For any
given pythagorean triple (a, b, c), we construct five poly-
ominoes that form a net of a cube of size c × c × c and
two nets of two cubes of size a × a × a and b × b × b.

1 Introduction

A polyomino is a “simply connected” set of unit squares
introduced by Solomon W. Golomb in 1954 [7]. Since
then, polyominoes have been playing an important role
in recreational mathematics (see, e.g., [5]). In 1962,
Golomb also proposed an interesting notion called “rep-
tile”: a polygon is a rep-tile of order k if it can be
divided into k replicas congruent to one another and
similar to the original (see [6, Chap 19]).

From these notions, Abel et al. proposed a new notion
[1]; a polyomino is said to be a rep-cube of order k if it
is a net of a cube (or, it can fold to a cube), and it can
be divided into k polyominoes such that each of them
can fold to a cube. If all k polyominoes have the same
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size, we call the original polyomino a regular rep-cube
of order k. We note that crease lines are not necessarily
along the edges of the polyomino. For example, a regu-
lar rep-cube of order 2 folds to a cube by folding along
the diagonals of unit squares; see Figure 1.

Figure 1: A regular rep-cube of or-
der 2 [1]; each T shape can fold to a
cube, and this shape itself can fold
to a cube of size

√
2 ×

√
2 ×

√
2 by

folding along the dotted lines.

In [1], Abel et al. propose regular rep-cubes of or-
der k for each k = 2, 4, 5, 8, 9, 36, 50, 64, and also k =
36gk�2 for any positive integer k� and an integer g in
{2, 4, 5, 8, 9, 36, 50, 64}. In other words, there are in-
finitely many k that allow regular rep-cube of order k.
On the other hand, they left an open problem that asks
if there is a rep-cube of order 3. In this paper, we first
answer to this question. There are no regular rep-cube
of order 3.

Next we enumerate all possible regular rep-cubes of
order k for small k. We mention that the following prob-
lem is not so easy to solve efficiently; for a given polygon
P , determine if P can fold to a cube or not. Recently,
Horiyama and Mizunashi developed an efficient algo-
rithm that solves this problem for a given orthogonal
polygon, which runs in O((n + m) log n) time, where n
is the number of vertices in P , and m is the maximum
number of line segments that appears on a crease line
[8]. We remark that the parameter m is hidden and can
be huge comparing to n. In our case, P is a polyomino,
and this hidden parameter is linear to the number of
unit squares in P , and hence our algorithm is simpler.

Finally, we investigate non-regular rep-cube. In [1],
Abel et al. also asked if there exists a rep-cube of area
150 that is a net of a cube of size 5 × 5 × 5 and it can
be divided into two nets of cubes of size 3 × 3 × 3 and
4 × 4 × 4. This idea comes from a pythagorean triple
(3, 4, 5) with 32 + 42 = 52. We give a partial answer to
this question by dividing into more pieces than 2. We
give a general way for any pythagorean triple (a, b, c)
with a < b < c to obtain five piece solution. That is, for
any given pythagorean triple (a, b, c) with a < b < c, we
construct a polyomino that is a net of a cube of c×c×c,
and it can be divided into 5 pieces such that one of 5
pieces can fold to a cube of a × a × a, and gluing the
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remaining 4 pieces, we can obtain a net of a cube of
b × b × b.

Due to lack of space, some proofs are omitted.

2 Nonexistence of regular rep-cubes

The main theorem in this section is the following.

Theorem 1 There does not exist a regular rep-cube of
order 3.

We first show two lemmas (proofs are omitted):

Lemma 2 Let Q be a cube and P any development1 of
Q. Then P is concave.

Let P be a polyomino (not necessarily hexomino) that
can fold to a cube Q. Then, by Lemma 2, P has no
“rolling belt” (see [4] for further details). This fact im-
plies that, when we fold P to Q, each vertex on Q should
appear at either the grid point of P or the middle point
of a unit edge in P . For these vertices of Q, we state
stronger property:

Lemma 3 Let P be a polyomino that can fold to a cube
Q. Let � be the length of an edge of Q. (That is, P is
a 6�2-omino.) Then P can be placed on a grid of size �
so that every vertex of Q on P is on a grid point. I.e.,
not only all vertices on Q appear on the boundary of P ,
but also they are also aligned on the grid points of size
�.

Now we turn to the proof of Theorem 1. We assume
that there exists a regular rep-cube of order 3, and de-
rive contradictions. That is, we assume that there is
a polyomino P̂ such that P̂ can be divided into three
polyominoes P1, P2, P3 of the same size, and each of
P̂ , P1, P2, P3 can fold to a cube of certain size. Let Q̂
and Qi denote the cubes folded from P̂ and Pi, respec-
tively. We suppose that the length of an edge of Qi is �.
That is, Pi is a 6�2-omino, and P̂ is a 18�2-omino. We
remark that � is not necessarily an integer, but 6�2 is.

Now we consider the polyomino P1; that is a 6�2-
omino, and folds to the cube Q1 of size �× �× �. Then,
by Lemma 3, P1 can be on the grid of size � so that every
vertex of Q1 is on the grid. We take any two vertices v1

and v2 of Q1 of distance � on the grid. Then the vector−−→v1v2 can be represented by (a, b) for some nonnegative
integers a and b. That is, a2+b2 = �2 for some integers a
and b. (The same idea can be found in [4, Ch. 5.1.1] and
[3].) We can apply the same argument to P̂ and Q̂, and
hence there are some nonnegative integers â and b̂ such
that â2 + b̂2 = 3�2. Thus we obtain â2 + b̂2 = 3(a2 + b2).

Therefore, it is sufficient to show that there are no
such integers. To derive a contradiction, we assume

1We use “net” that has no overlap when it is spread out. When
we use “development,” overlap is not yet considered.

that we have â2 + b̂2 = 3(a2 + b2), and they are the
minimum integers with respect to the value of â2 + b̂2.

Now, for an integer i, (3i± 1)2 = 9i2 ± 6i+ 1. There-
fore, a square number x is either x = 3x� or 3x� + 1 for
some integer x�. Since â2 + b̂2 = 3(a2 + b2) is a multiple
of 3, both of â and b̂ are multiples of 3, say â = 3â� and
b̂ = 3b̂�. Then, we have (3â�)2 + (3b̂�)2 = 9(â�2 + b̂�

2
) =

3(a2 + b2). Thus we obtain a2 + b2 = 3(â�2 + b̂�
2
). This

contradicts the minimality of the value of â2+b̂2. There-
fore, we have no such integers a, b, â, b̂. This completes
the proof of Theorem 1. �

3 Enumeration of regular rep-cubes

In this section, we describe the exhaustive search algo-
rithm for generating all regular rep-cubes of order k (for
k = 2 and k = 4).

Algorithm 1 gives the outline of this algorithm. It
works as follows: Let Si be the set of all (6× i)-ominoes
such that (1) it is composed by i nets of a unit cube,
(2) it can cover a part of a cube of size

√
k ×

√
k ×

√
k.

In the term of search of development, each element in
Si is called a partial development of a cube of size

√
k×√

k×
√

k [10]. That is, S1 is the set of all nets of a unit
cube, which consists of 11 hexominoes, and each set Si

with i > 1 is a subset of (6 × i)-ominoes that can be
computed from Si−1. Let Pi be any polyomino in Si,
e.g., P1 is one of the 11 hexominoes in S1.

In Procedure CheckCover, the algorithm checks if Pi

can cover the cube of size
√

k×
√

k×
√

k without overlap.
The details will be described later. Our final goal is to
obtain the set Sk that contains all regular rep-cubes of
order k from the set S1.

Algorithm 1: Outline of the exhaustive search
algorithm.
Input : Integer k of the order for the rep-cube;
Output: All rep-cubes in Sk;

1 for i = 2 to k do
2 foreach partial development Pi−1 in Si−1 do
3 foreach development P1 in S1 do
4 attach P1 to Pi−1 at each possible

adjacency square on the boundary of
Pi−1 to obtain a new polyomino Pi;

5 if CheckCover(Pi)==1 then
6 store Pi into Si; // Pi is a partial
7 // development of the box of
8 // size

√
k ×

√
k ×

√
k

9 return Sk;

The algorithm works in a loop as follows. It picks
up a polyomino Pi−1 in Si−1 and a hexomino P1 in
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Figure 2: All
possible adja-
cency empty
squares on the
boundary of a
net.

Figure 3: Every square of P is
marked with a unique number ac-
cording to the adjacency list.

S1, and attaches P1 by edge-to-edge gluing to Pi−1 at
each possible adjacency empty square on the boundary
of Pi−1 as shown in Figure 2. We note that we have to
consider not only the overlap, but also the flip of P1 if
P1 is not congruent to its mirror image. By this step, it
generates a new polyomino Pi, which is a component of
i nets of a unit cube. This Pi will be examined whether
it can fold to a part of the cube of size

√
k×

√
k×

√
k or

not. This loop terminates at i = k, when the polyomino
Pk can fold to a complete cube.

As mentioned in Introduction, we find that the folding
lines of the cube of

√
k×

√
k×

√
k are not along the edges

of unit squares. Since the rep-cubes of order 2 and 4
have different folding ways, we need a universal method
to check whether a polyomino is a partial development
or not. In [10], the authors proposed an algorithm that
checks the positional relationships of unit squares on
the polyomino. Consider any polyhedron, e.g., a cube
Q, folded from a polyomino P . Then we can obtain
an adjacency relationship of unit squares in P on Q.
That is, two unit squares share an edge on P only if
they share it on Q. Thus any development of Q keeps
a part of the same adjacency relationship. Therefore,
we can decide if a polyomino P can fold to a cube Q by
checking the positional relationship of the unit squares
in Procedure CheckCover.

We consider the first development in Figure 5 as an
example P (Figure 3). We first mark a unit square with
the number 1 as the start point. Then we mark all of its
neighbor-squares a number according to the adjacency
list of cube of size

√
2 ×

√
2 ×

√
2 as in Table 1 and

Figure 4 in all four directions. (For example, the square
1 is surrounded by 12(above), 11(right), 2(below), and
3(left) from the viewpoint of the square 1.) This step is
extended to its farther neighbors until every square of P
is marked with a number. After this step, if every square
in connected P is marked with its unique number, P can
wrap the cube of size

√
k×

√
k×

√
k with consistency. On

the other hand, if (1) one square is marked with different
numbers by its neighbors or (2) two or more squares are
marked with the same number, then an overlap occurs

in this folding way of P . We check all possible start
points and directions for each P .

Table 1: Adjacency list of cube of size
√

2 ×
√

2 ×
√

2.
Square ID Up Right Down Left

1 12 11 2 3
2 1 11 5 4
3 12 1 4 6
4 3 2 5 6
5 4 2 8 7
6 3 4 7 9
7 6 5 8 9
8 7 5 11 10
9 6 7 10 12

10 9 8 11 12
11 10 8 2 1
12 9 10 1 3

1

2

4

5

6 9
12

11

10 Figure 4: Adjacency relationship
of the squares on the cube of size√

2 ×
√

2 ×
√

2.

Procedure CheckCover(Pi)
Input : Polyomino Pi in Si;
Output: Whether Pi can wrap up the cube of size√

k ×
√

k ×
√

k or not;
1 foreach square in Pi do
2 mark the square 1 as the start point
3 foreach marked square in Pi do
4 mark its unmarked adjacent squares as the

adjacency matrix of the cube of size√
k ×

√
k ×

√
k;

5 if any square of Pi gets marked by two or
more different numbers then

6 break; // Pi has overlap

7 if every square of Pi is marked by a unique
number then

8 return 1; // Pi can wrap up the cube

9 return 0;

As a result of finding the rep-cube of order 2, by
putting two developments of a cube aside, there are
2424 distinct dodecominoes. Among them, there are
33 regular rep-cubes of order 2 that can fold to a cube
of size

√
2 ×

√
2 ×

√
2 and each of them can be divided

into two nets of a unit cube. As shown in Figures 5 and
6, we can observe that 17 rep-cubes out of 33 consist
of two nets of the same shape. We call them uniform
rep-cubes. Precisely, we say a regular rep-cube of order
k is uniform if its all k nets are the same shape.
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Figure 5: All 17 uniform rep-cubes of order 2.

For the case of finding the regular rep-cube of order
4, we also implement this algorithm. As a result, we
got the amount of partial developments of i pieces as in
Table 2, which means there are 7185 regular rep-cubes
of order 4. Among them, we also find all uniform rep-
cubes of order 4, which are 158 in total. One example
of these uniform rep-cubes is shown in Figure 7. Out of
158, 98 of these uniform rep-cubes are made of pieces in
shape (b) shown in Figure 8.

Table 2: The number of partial developments of regular
rep-cubes of order 4.
Set of partial developments S1 S2 S3 S4

Number of developments 11 2345 114852 7185

In Figure 1 of [1], they gave three uniform rep-cubes
of order 2 (Figure 1), 4, and 9. On the other hand, in
[1], they also show a regular rep-cube of order 50 that
contains all kinds of 11 nets of a unit cube. It may
worth focusing on these special cases for a larger k.

In the analysis of the results, we found two different
patterns of shapes that can make the same rep-cube. As
shown in Figure 9, except for the difference in compo-
sition, these two rep-cubes have the same contour, the
same surface area and the same folding way. Finding

Figure 6: All regular rep-cubes of order 2 that are not
uniform.

Figure 7: An example
of uniform rep-cubes
of order 4.

(a) 4 (b) 98 (c) 14 (d) 8 (e) 0 (f) 10

(g) 0 (h) 0 (i) 11 (j) 9 (k) 4

Figure 8: List of the amount of uniform rep-cubes of
order 4 made by each of 11 shapes.

this kind of rep-cube can be a interesting topic in the
future research.
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Figure 9: Two different patterns make the same rep-
cube of order 4.

4 Rep-cubes based on pythagorean triples

A pythagorean triple is a 3-tuple of positive integers
that satisfies a2 + b2 = c2. In [1], Abel et al. propose
an interesting open question related to the pythagorean
triple. That is, the question asks whether there is a
rep-cube of order 2 of area c2 such that (1) it folds to
a c × c × c cube, and (2) it can be divided into two
polyominoes so that they fold to a a × a × a cube and
another b× b× b cube. The most famous one is (3, 4, 5)
with 32 + 42 = 52. We note that for any pythagorean
triple (a, b, c), for any positive integer k, (ak, bk, ck) is
also a pythagorean triple. However, we only consider
pythagorean triples with GCD(a, b, c) = 1. Then, it is
known that a triple (a, b, c) with GCD(a, b, c) = 1 is
a pythagorean triple if and only if there are two posi-
tive integers m,n such that m,n are relatively prime,
0 < n < m, m − n is odd, and we can obtain a
pythagorean triple as (m2 −n2, 2mn,m2 +n2) for these
n and m.

It is trivial that when we divide any net of a c× c× c
cube into 6c2 unit squares, we can make two cubes of
size a×a×a and b×b×b. Therefore, we can consider this
open problem as an optimization problem to minimize
the number of polyominoes that can form both of a net
of c × c × c cube, and two nets of two cubes of size
a × a × a and b × b × b. In this section, we give the
following theorem:

Theorem 4 Let (a, b, c) be any pythagorean triple with
a < b < c. Then we can construct a set S(a, b, c) of five
polyominoes such that (1) the polyominoes can form a
net of c× c× c cube, and (2) they can form two nets of
two cubes of size a × a × a and b × b × b.

We here show an example in Figure 10 to get the
idea. When we choose a pythagorean triple (3, 4, 5), the
polyomino in Figure 10(a) folds to a 3 × 3 × 3 cube,
and the polyomino in Figure 10(b) folds to a 4 × 4 × 4
cube. It is less intuitive, however, the reader can obtain
a 5× 5× 5 cube from the polyomino in Figure 10(c) by
folding along the dotted lines. Here we give a general
construction for any pythagorean triple.

Proof. We first give a brief idea of the construction in
Figure 11. The first step is that we open two small cubes

(a)

(b) (c)

Figure 10: The set S(3, 4, 5) of five polyominoes that
folds to (a,b) two cubes of size 3 × 3 × 3 and 4 × 4 × 4,
and (c) one cube of size 5 × 5 × 5.

a   a   a

c   c   c

a
b

c

b
c

a
c

c
b   b   b

b

a
b

b

a

a
b

b

c

a
a

b
b c

Figure 11: Brief idea of the construction.

of size a× a× a and b× b× b at their any vertices. We
cut along the three lines from the vertex until we have a
kind of a triangular-pyramid-like shape; each rectangu-
lar face consists of two squares, and these three rectan-
gles are glued like in wind-wheel shape. Then we regard
these two triangular pyramids as cone-like shapes, and
attach each of apexes to the two opposite vertices of the
big cube of size c× c× c. That is, they are glued to two
endpoints of a diagonal of the big cube.

The main trick is that the grids of two small cubes
are not aligned to the grid of the big cube; we twist two
cones so that their edges (or grid lines) make two edges
of pythagorean triangle of length a and b. As a result,
three vertices of the big cube are on the boundary of the
wind-wheel shape made from the cube of size b × b × b,
and the other three vertices of the big cube are on the
boundary of the other wind-wheel shape made from the
cube of size a×a×a. Then, we have two cases depending
on the size of these two small cubes.

The first case is that a < b < 2a. For example, the
most famous pythagorean triple (3, 4, 5) (for m = 2, n =
1) satisfies this condition. In this case, the situation is
illustrated on the net of the big cube in Figure 12. The
outline is the net of the big cube, and three vertices
labeled by p form a vertex of the big cube, and the apex
of the cone made by the small cube of size a × a × a
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p p p

q q q

A

B
C

D E
F

G H

I

J

X1
X2

Y2Y1
K

L

Figure 12: View on the net of the big cube of size c×c×c.

is attached at the vertex p. In the figure, all squares
of this small cube are already depicted, and they are
aligned along the zig-zag line joining two points X1 and
X2. On the other side, three vertices labeled by q form
the opposite vertex of the big cube, where the apex
of the cone made by the other small b × b × b cube is
attached to. In the figure, three squares of size b× b are
depicted along the zig-zag line joining two points Y1 and
Y2. Therefore, out task is to form three more squares
of size b × b by the belt between lines X1X2 and Y1Y2

with few dissections.
We first extend the grid lines of squares of size b × b

as shown in Figure 12. Then the belt is divided into
six parts; three of them are congruent to the hexagon
ACDEKL, and three of them are congruent to the
hexagon EFGHJK. Then our claim is that gluing the
line GFEK to ACDE, we obtain a square HJKL of
size b×b. If it works, it is easy to see the theorem holds.

p p

A

B

C

D E
F

G
H

I

J

b

q

b
c

K

L

M

N

length: a=a’+a’’

length: a’’

length: a’

O

Figure 13: Detailed lengths of polyominoes.

Now we focus on this part (see Figure 13). We first
observe that two triangles pMC and JKq are congruent
to the right triangle xyz with |xy| = a, |yz| = b, and
|zx| = c. We now let a� = b−a and a�� = a−a� = 2a−b.
Since |MC| = b and |MB| = a, we have |BC| = b−a =
a�. The edges BC and CD make an edge of an a × a
square when it folds to a small cube, hence |CD| =
a− a� = a��. Since triangle NBC is congruent to CDE,
|DE| = a�, and hence |EF | = a��. Since the triangle

COJ is congruent to the right triangle xyz, we obtain
|CO| = a, |DO| = a�, and hence |EK| = a�. Since
|EF | = a�� and |KJ | = a, we have |GH| = |MA| = a�.
Thus |AC| = b − a� = a. Therefore, the zig-zag line
ACDE can be glued to the zig-zag line GFEK since all
lengths are matched and they are orthogonal. By the
fact |LK| = b, the resulting rectangle LKJH should be
square by the area constraint for the belt.

The second case 2a < b is omitted, however, a similar
idea works. In both cases, we have the theorem. �

By Theorem 4, we have the following immediately.

Corollary 5 There are infinitely many sets of five poly-
ominoes such that (1) the polyominoes can form a net
of c× c× c cube, and (2) they can form two nets of two
cubes of size a × a × a and b × b × b.

We remark that it is open that if there are infinitely
many distinct non-regular rep-cubes.
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