
Minimum Enclosing Circle Problem with Base Point

Binay Bhattacharya∗ Lily Li†

Abstract

This article presents a linear time algorithm to solve a
variant of the minimum enclosing circle (MEC) prob-
lem. The inputs are a point set S of size n, and a
point b in the plane called the free point. Our goal is
to locate a circle center o∗ such that the maximum dis-
tance of all points in S to o∗ divided by the distance
from o∗ to b is minimized. The original investigation
by Qiu et al. [5] found an O(n log n) algorithm using
the furthest point Voronoi diagram of the point set S.
This problem can be formulated as a generalized linear
programming problem when the domain for the opti-
mal solution is restricted and therefore, can be solved
in linear expected time [3]. We describe here a simple
deterministic linear time algorithm based on Meggido’s
prune-and-search solution to the standard problem [4].
We extend our technique to solve similar variants of
the MEC problem where the free point is replaced with
other geometric objects such as a free line, a free line
segment, and a set of free points.

1 Introduction

The classical minimum enclosing circle (MEC) problem
takes a point set S of size n and seeks to find a cover-
ing circle of smallest radius. Since this enclosing circle
is uniquely defined by its center, the problem is equiv-
alent to finding a point o∗ to minimize its maximum
distance to the points of S. This problem, proposed
as early as 1856 by James J. Sylvester, yielded to var-
ious techniques [7]. Shamos and Hoey developed an
O(n log n) algorithm [6]. Later, in 1983, Megiddo pre-
sented an O(n) algorithm using the prune-and-search
technique. By first constructing and solving a restricted
problem, he was able to eliminate a fraction of the points
at each iteration to solve the general problem optimally
[4]. Simple linear time randomized algorithms have been
proposed by Matousek et al. [3].

In addition to the search for an optimal algorithm,
researchers studied variants of the standard problem by
introducing weight to the points of S and by restrict-
ing the placement of the circle center [4, 2]. We came
across the basic premise of this problem from a paper
by Qiu et al. [5]. In previous MEC problems, a cost can

∗School of Computer Science, Simon Fraser University,
binay@cs.sfu.ca

†Same as above, xyl9@sfu.ca

be assigned to each point of the point set. The goal of
the problems can be restated as minimizing the maxi-
mum cost. In the classical MEC problem, the cost of
a point is its euclidean distance to the circle center. In
the weighted MEC problem the cost of a point is this
distance scaled by the weight of the point. Instead of
a constant weight associated to each p ∈ S, Qiu et al.
proposed a dynamic weight on the distance to a cho-
sen point, known as the free point, in the plane. Their
paper described an application of this work to target
registration error.

Each variant of the classical problem considered here
introduces a fixed geometric object to augment the dis-
tance to the circle center. The simplest geometric object
to consider is a point so, stated formally, the free point
variant of the problem is as follows:
Input: A point set S, |S| = n, and a free point b.
Goal: If d(u, v) denotes the Euclidean distance between
points u and v, then the cost co(p, b) for a circle center
o and point p ∈ S with respect to the base point b is
defined as:

co(p, b) =
1

d (b, o)
· d (p, o) .

Thus our objective is to determine o∗ such that:

max
p∈S

d (p, o∗)
d (b, o∗)

= min
o∈R2

�
max
p∈S

d (p, o)

d (b, o)

�
.

As we will see later, we are interested in the distance
function co(p, b) where o lies in the half-space, delin-
eated by the bisector of p and b, containing p. As a
result, the problem under consideration can be formu-
lated by a quasiconvex program. Such programs can be
solved in expected linear time by using the randomized
algorithm of Matousek et al. [3]. The contribution of
this paper is to give a simpler deterministic algorithm
using Megiddo’s prune-and-search method. Similar al-
gorithms can be designed for other dynamic MEC prob-
lems considered here.

In Section 2 we will present a linear time algorithm
to solve this problem. Section 3 will explore the MEC
problem with dynamic weight with respect to a free line
and a free line segment. These three variants are solved
in linear time by extending the algorithm described in
Section 2 and by using previously constructed build-
ing blocks. Section 4 extends the free point variant by
considering a set of free points. We will present an al-
gorithm for this problem which is linear in the number

50

of input points given that a non-trivial solution — a
concept that we will define later — exists.

2 One Free Point

We begin our investigation into the dynamic weighted
MEC problem with respect to a free point by con-
sidering the range of possible costs. Observe that as
the circle center o approaches infinity in any direction,
co(p, b) → 1 for all p ∈ S since d(p, o) approaches d(b, o)
in value. Let o at infinity be the trivial solution. Thus
it only makes sense to optimize the placement of o when
co(p, b) < 1 for all p ∈ S.

Lemma 1 If b is inside the convex hull of S, then for
any circle center o, there exists a point p ∈ S such that
co(p, b) ≥ 1.

Proof. Place o anywhere in the plane and construct
the convex hull CH(S) of S. If the segment ob is inside
or on the convex hull then there exists a point p ∈ S
such that |op| ≥ |ob|. Suppose instead that o is outside
CH(S). Let L be the line containing b and o. Since
b is inside CH(S), L intersects an edge e of CH(S)
between o and b and an edge f of CH(S) after b. Let u
and v be the end-points of f . Either d(u, o) ≥ d(b, o) or
d(v, o) ≥ d(b, o). If d(u, o) ≥ d(b, o) then co(u, b) ≥ 1. If
d(v, o) ≥ d(b, o) then co(v, b) ≥ 1. See Figure 1. �

By Lemma 1, a nontrivial solution only exists when
b is strictly outside the convex hull of S. We can check
that this is the case in linear time. In the following, we
assume that b is outside the convex hull of S.

The basis of our linear time algorithm will be
Megiddo’s prune-and-search algorithm for finding the
unweighted MEC [4]. Our algorithm proceeds in two
steps. First, we solve a restricted version of the prob-
lem in linear time. Using this solution as a subroutine,
we will address the problem in full generality. At each
step of the algorithm, we will be able to prune at least
kn points where k is some constant in the interval (0, 1)
and n is the number of points remaining.

o

b

u

v

l

Figure 1: Configuration when base point is inside of the
convex hull of point set.

2.1 Restricted Case for a Free Point

The restricted version of the problem is as follows:
Input: A point set S where |S| = n, a free point b, and
a line L.
Goal: Find the optimum circle center o∗ of the gen-
eral one free point problem if it lies on L. Otherwise
determine the side of L containing o∗.

2.1.1 Building Tools

To solve the restricted problem, we must understand the
geometry of the optimum circle center o∗. We require
that co∗(p, b) < 1 so, intuitively, o∗ should be placed
closer to the points in S than to b. We formalize our
intuition in the following.

Let Lu,v be the bisector line of points u and v. For
any point p and circle center o, if o is on Lb,p, then
co(p, b) = 1. Further, Lb,p divides the plane in two
halves, one side closer to b and the other closer to p.
If o is placed on the side closer to p, then co(p, b) < 1.
Thus, to ensure that co(p, b) < 1 for all points, we must
place o on the side of Lb,p closest to p for all p ∈ S.
This is exactly the cell of b in the furthest point Voronoi
diagram S∪b. Since b is an extreme point of the convex
hull of S ∪ b, this cell is non-empty. Call this cell the
feasible region of S with respect to b. Each point in the
interior of the feasible region represents a circle center
with cost less than one. Let the intersection of a line L
with the feasible region be the feasible interval of L.

Lemma 2 The feasible interval of L with respect to the
point set S of size n and a free point b can be found in
optimal O(n) time.

Proof omitted.
Next, focus on one point p ∈ S and consider how

moving o changes co(p, b). In particular, we investigate
all locations for o which yield the same value of co(p, b).
Let co(p, b) be a constant α with 0 < α < 1. To simplify
the calculation, locate p at the origin. Let o = (ox, oy)
and b = (bx, by). We determine the coordinates of o
which keep the cost constant.

α2 =

�
d(p, o)

d(b, o)

�2

(1)

=
o2x + o2y

(ox − bx)2 + (oy − by)2
(2)

o2x + o2y = α2((ox − bx)
2 + (oy − by)

2) (3)

α2(b2y + b2x) = (1− α2)o2x + (1− α2)o2y+ (4)

2α2bxox + 2α2byoy

Thus co(p, b) remains unchanged when o is placed on
the circle described by equation 4 with variable in ox
and oy. Let this circle and its interior be denoted by

51

Dα(p, b). Observe that if o is located on the boundary
(resp. inside, outside) of Dα(p, b), then co(p, b) = α
(resp. co(p, b) < α, co(p, b) > α). See Figure 2. For
the restricted case we need to find the value α such that
Dα(p, b) is tangent to a line L. The interior of Dα(p, b),
in this case, lies entirely on one side of L and this side
contains the optimum circle center with respect to b.

b

p

γ < β < α

Dγ(p; b)

Dβ(p; b)

Dα(p; b)

Figure 2: Circles of equal cost about point p with re-
spect to the free point b.

Lemma 3 Given a line L, a point p of the point set,
and a free point b, we can find an α such that Dα(p, b)
is tangent to L in constant time.

2.1.2 Solving the Restricted Case for a Free Point

We will use the tools built thus far to solve the restricted
problem in linear time.

Lemma 4 Let a line L be given. If the optimum circle
center o∗ lies on L, then o∗ can be found in linear time.
Otherwise, it takes at most linear time to determine the
side of L containing o∗.

Proof. To simplify the explanation, we perform a
transformation on the input so that L coincides with
the x-axis.

1. Use Lemma 2 to find the feasible interval of L. If
the interval is empty, return the side of L which
does not contain the free point b. This side contains
the optimal solution.

2. Suppose that the feasible interval of L is non-empty.
Proceed through the following loop:

(a) If the point set S contains fewer than two
points, then the loop terminates. Otherwise,
randomly pair up the points in S. For each
pair {p, q}, find the intersection of the bisec-
tor Lp,q with L. If Lp,q is parallel to L, then
the point in the pair closer to L is redundant
and can be removed. Let the set of intersec-
tion points on L be I.

(b) Find the median of I using a linear time algo-
rithm [1]. Let this median value be xm.

(c) Suppose, without loss of generality, that xm

is to the left of the feasible interval of L. The
optimum circle center x∗ on L satisfies xm <
x∗. For each bisector Lp,q which intersect L
to the left of xm, we can remove the rightmost
point q of Lp,q from S since q is closer to x∗

than p. See Figure 3. Start again at step (a)
with this modified S.

(d) Otherwise, xm falls strictly within the feasible
interval. Let E be the subset of points in S
farthest from xm such that d(p, xm) = dm for

all p ∈ E. Then the cost cxm
(p, b) = d(p,xm)

d(xm,b) =
dm

d(xm,b) for each p ∈ E . Let α = dm

d(xm,b) .

i. For every point p ∈ E find the α-cost disk
Dα(p, b) of p as discussed in Section 2.1.1.
The boundary of each Dα(p, b) will inter-
sect L at xm and at most one other point.

ii. Suppose, without loss of generality, that
the boundary of some Dα(p, b) intersects
L at a point to the right of xm. Since
co(p, b) < α when the circle center o is
in the intersection of Dα(p, b) for all p ∈
E, xm < x∗. Prune one point from each
bisector intersecting L to the left of xm as
before. After removing the unnecessary
points from S, restart from step (a).

iii. Otherwise all α-cost disks are tangent to
L at xm. Exit the loop. See Figure 4c.

Upon termination, we can find the global optimal
circle center o∗ if it is on L or determine the side of
L containing o∗ by constructing the intersection of the
Dα(p, b) for the remaining p ∈ S. See Figure 4.

In each iteration we do a linear amount of work and
prune away at least one fourth of the remaining points.
Thus the running time of the algorithm is linear. �

Remove

Remove

xm x
∗

L

Feasible interval of L

Figure 3: Points to remove if xm falls outside the feasible
interval of L.

52

L

b o∗ is in this direction

p

(a) Terminate with only one point.

L

xm

b

o
∗
is in this direction

(b) Terminate with multiple points
whose equal-cost circle all intersect.

L
xm

b

xm = o
∗

(c) Terminate with multiple points
where at least two have equal-cost cir-
cle which do not intersect.

Figure 4: Terminating conditions for the general case with one free point and global optimum circle center o∗.

2.2 General Case for a Free Point

We can design the algorithm for the general problem
with respect to a free point using the linear time or-
acle for the restricted case. It is almost identical to
Megiddo’s general algorithm [4].

Theorem 5 The optimum circle center o∗ to minimize
the maximum cost co∗(p, b) of all points in the point set
S with respect to a free point b can be found in linear
time with respect to the size of S.

3 A Free Line and a Free Line Segment

Similar to the dynamic MEC problem involving one free
point, we will introduce the problem variant where the
cost changes with respect to a free line.
Input: A point set S where |S| = n and a free line B.
Goals: Find a circle center o such that the maximum
cost co(p,B) for the points p ∈ S is minimized where
the cost co(p,B) of a point p is:

co(p,B) =
1

minb∈B d (b, o)
· d (p, o) .

The problem involving a free line segment is identical
except that the input B is a line segment.

3.1 General Case with Free Line

We begin by considering cases where the trivial solution
is optimal. In the case of the free point, the base point
cannot be inside the convex hull of the point set S.

Lemma 6 If B intersects the convex hull of S, then
there exists a point p ∈ S such that c(p,B) ≥ 1.

Proof. Suppose the free line (resp. free line segment)
intersects edge e of the convex hull of S at some point b.
Let u and v be the end points of e. Then for any circle
center o, d(o, u) ≥ d(o, b) or d(o, v) ≥ d(o, b) similar to

Lemma 1. Without loss of generality suppose d(o, u) ≥
d(o, b). If b� is the actual base point closest to o, then
d(o, b) ≥ d(o, b�) so

co(u,B) = co(u, b
�) =

d(o, u)

d(o, b�)
≥ d(o, u)

d(o, b)
≥ 1.

�

Thus the trivial solution, which locates the circle cen-
ter at infinity orthogoal to B, is optimal when B inter-
sects the convex hull of S. Determining if a line inter-
sects the convex hull of a point set S takes linear time.
In the forgoing, let the intersection of the free line B
and the convex hull of S be empty and, without loss of
generality, that all p ∈ S are to the right of B.

Given a line L, first find the feasible interval of L with
respect to B. Instead of intersecting L with the bisec-
tors Lb,p for p ∈ S as is the case for the free point, we
intersect L with the parabola of equal distance between
p and the line B. Call this the 1-cost parabola of p
and denote it by H1(p,B). Since a parabola intersects
a line in at most two places, finding the intersection of L
with H1(p,B) for all p ∈ S takes linear time. Without
too much ambiguity, let this intersection be the feasible
interval of L.

Theorem 7 Let B be a free line. The optimum circle
center o∗ to minimize the maximum cost co∗(p,B) of all
points in the point set S can be found in linear time.

The crucial observation is that the intersection of the α-
disks behaves as though we have a free point. Choose a
point um on the line L as the circle center. Let bm be the
closest point on B to um. Suppose that the boundary
of every Dα(p, bm) intersect L to the left of um. For any
u� on L right of um, with closest point b� on B, the cost
for a point p is:

cu�(p, b�) =
d(p, u�)
d(b�, u�)

>
d(p, u�)
d(bm, u�)

≥ cum
(p, bm).

53

The first inequality holds since d(bm, u�) > d(b�, u�) and
the second holds since u� is outside Dα(p, bm).

3.2 A Free Line Segment

We observe that the linear time solution for the free
line variant of the MEC problem easily adapts to a so-
lution for a free line segment. Let K be the free line
segment. Instead of the 1-cost parabolas considered in
Theorem 7, we note that region in the plane equidistant
between K and any point p in the point set is composed
of constantly many line and parabola parts. Let these
be 1-cost curves. Finding the intersection of all 1-cost
curves takes linear time just like the 1-cost parabolas.
Thus a slight modification to the algorithm in Theorem
7 yields an algorithm for the free line segment.

Corollary 8 Let K be a line segment and S be a point
set of order n. Finding the optimum circle center o∗

to minimize the maximum cost co∗(p,K) overall points
p ∈ S takes O(n).

4 A Set of Free Points

We extend the one free point problem by using a point
set as the fixed geometric object. This variant of the
MEC problem is stated formally as:
Input: A point set S where |S| = n and a free point
set B where |B| = m.
Goals: Find a circle center o∗ such that the maximum
cost co∗(p,B) for the points p ∈ S is minimized where
the cost co(p,B) of a point p with respect to center o is:

co(p,B) =
1

minb∈B d (b, o)
· d (p, o) .

Given a circle center o, this slightly altered cost cal-
culation first finds the closest point b∗ ∈ B to o, then
divides the distance to p by the distance to this closest
free point b∗. More succinctly our objective is to find
o∗ such that:

max
p∈S

�
d(p, o∗)

minb∈B d(b, o∗)

�
= min

o∈R2
max
p∈S

�
d(p, o)

minb∈B d(b, o)

�
.

As before, we begin by considering when the trivial
solution is optimal. Suppose that some b ∈ B falls inside
the convex hull, CH(S), of S. For any o in the plane
as the circle center, there exists a points p ∈ S such
that c(p, b) ≥ 1 by Lemma 1. Consider the closest point
b� ∈ B to o. Observe that

1 ≤ d(o, p)

d(o, b)
≤ d(o, p)

d(o, b�)
= co(p, b

�) = co(p,B).

Since d(o, b) ≥ d(o, b�), the trivial solution is optimal
when any point in B falls within CH(S). However, even
if all points in B are outside the CH(S), a non-trivial
solution might still not exist. Possible cases include:

1. If S and B are linearly separable, then the optimal
cost is less than one.

2. If S and B are not linearly separable, we have the
following sub-cases.

(a) If there exist a point of B inside CH(S), the
optimal cost is trivially one.

(b) If all points of B lie outside CH(S), but
CH(S) and CH(B) intersect, the optimal cost
could be one or less than one.

In the next section, we consider the case (1) where the
optimal cost is less than one. Again we will solve this
problem in two steps. First we build an oracle to solve
the restricted problem on a line in linear time. Then
we use the oracle to develop an algorithm to solve the
general case. This second step is a modified version of
the general case of the one free point variant so will only
be mentioned briefly.

4.1 Restricted Case for a Set of Free Points

Input: A point set S where |S| = n, a free point set B
where |B| = m and a line L.
Goals: Find a circle center o∗ which minimizes the
maximum cost co∗(p,B) for all p ∈ S if o∗ is on L.
Otherwise determine the side of L containing o∗.

Lemma 9 Let a line L, a point set S of order n, and a
set of free points B of order m be given. Assume that B
is linearly separable from S. We can find the side of L,
possibly including L, containing o∗ in O(n+m) time.

Proof. Perform a transformation of the input so that
L coincides with the x-axis.

1. Randomly pair up the points of S. For each pair
{p, q}, find the intersection of the bisector Lp,q with
L. Do the same with the free points of B. Let
the set of all intersections on L be I. Note that
|I| = �n

2 �+ �m
2 �.

2. Find the median x-coordinate of the points of I
using a linear time algorithm [1]. Let this median
value be xm.

3. Let E = {p ∈ S : d(p, xm) = maxq∈S d(q, xm)} be
the points in S farthest from xm and F = {b ∈
B : d(b, xm) = minc∈B d(c, xm)} be the points in
B closest to xm. Further let d(p, xm) = u for all
p ∈ E, d(b, xm) = v for all b ∈ B, and u/v = α.

4. If α ≥ 1 then xm is outside the feasible interval of
L. We must decide which side of xm contains the
feasible interval of L, if exists. Randomly select one
point p ∈ E and one free point b ∈ F .

54

(a) Find the bisector Lp,b of p and b. Suppose
that Lp,b intersects L at x� ≥ xm. Since α ≥ 1
and u ≥ v, we must have b is to the left of
Lp,b. Thus the optimum circle center x∗ on L
satisfies xm ≤ x∗. For bisectors Ls,q, with
s, q ∈ S, intersecting L to the left of xm,
remove the non-dominating point associated
with Ls,q. This point is closer to x∗ so has
lower cost. For bisectors Lr,t, with r, t ∈ B,
intersecting L to the left of xm, remove the
dominating base point associated with Lr,t.
This base point is farther from x∗. The case
where every Dα(p, b) intersects L to the left of
xm can be handled similarly. Restart the loop
after removing the redundant points.

5. If α < 1 then xm is in the feasible interval of the
line L. Pick any p ∈ E and for every b ∈ F then
calculate Dα(p, b). The optimum circle center o∗

must be in Dα(p, b) for any b since the optimum
cost of p is less than or equal to α.

(a) Suppose there exists some b ∈ F such that
Dα(p, b) intersects L to the right of xm. Then
x∗ satisfies xm ≤ x∗. Prune one point for
every bisector which intersects L to the left
of xm as described above. The case where
Dα(p, b) intersect L to the left of xm can be
treated similarly. Restart the loop after re-
moving the redundant points.

(b) Otherwise Dα(p, b) is tangent to L at xm

for every b ∈ F . Since a non-trivial solu-
tion exists, the half-plane of L containing any
Dα(p, b) for any p ∈ E and b ∈ F contains the
optimum circle center. Return this side of L.

The running time analysis is identical to that of the
restricted case for one free point in Lemma 4. Here,
however, the total size of the input is |S|+ |B| = n+m.
Thus the total running time is O(n+m). �

4.2 Unrestricted Case for a Set of Free Points

Theorem 10 Let B be a set of free points where |B| =
m. The optimum circle center o∗ to minimize the max-
imum cost co∗(p,B) of all points in the point set S can
be found in optimal O(n+m) time.

We can modify the algorithm for one free point to obtain
an O(n + m) algorithm for the general case for a free
point set B.

We use the oracle presented in Lemma 9 when solv-
ing for the restricted problem. Next, since the standard
algorithm already handles bisector intersections formed
from points of S, we will instead consider bisector in-
tersections formed from points of B. By determining

the quadrant containing the optimal solution, a frac-
tion of the base points can be eliminated from further
considerations.

5 Conclusion

We considered a variant of the MEC problem where the
cost of each point in the input point set S was dynamic
with respect to a fixed geometric object such as a point,
a line, a line segment, and a point set — with some
restrictions. We have presented a deterministic prune-
and-search based linear time algorithm to solve each
of these problems by using the fact that the distance
function is quasiconvex in the domain where the optimal
solution could lie. For the case 2b of Section 4, it is not
known whether a linear time solution exists.

Future work may consider a convex polygon as the
fixed geometric object. The cost of a point p given a
circle center o would be the d(o, p) divided by the closest
distance between o and a point on the convex polygon.

References

[1] Aho, A., Hopcroft, J., and Ullman, J.
The Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974.

[2] Hurtado, F., Sacristán, V., et al. Some con-
strained minimax and maximin location problems.
In Studies in Locational Analysis (2000), Citeseer.

[3] Malousek, J., Sharir, M., and Welzl, E. A
subexponential bound for linear programming. Al-
gorithmica 16 , 498–516.

[4] Megiddo, N. Linear-time algorithms for linear pro-
gramming in R3 and related problems. SIAM Jour-
nal on Computing 12, 4 (1983), 759–776.

[5] Qiu, L., Zhang, Y., and Zhang, L. Minimum
enclosing circle of a set of static points with dy-
namic weight from one free point. arXiv preprint
arXiv:1703.00112 (2017).

[6] Shamos, M. I., and Hoey, D. Closest-point prob-
lems. In Foundations of Computer Science, 1975.,
16th Annual Symposium on (1975), IEEE, pp. 151–
162.

[7] Sylvester, J. J. A question in the geometry of
situation. Quarterly Journal of Pure and Applied
Mathematics 1 (1857).

[8] Welzl, E. Smallest enclosing disks (balls and ellip-
soids). In New Results and New Trends in Computer
Science. Springer, 1991, pp. 359–370.

55

