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On the Planar Spherical Depth and Lens Depth
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Abstract

For a distribution function F on Rd and a point q ∈ Rd,
the spherical depth SphD(q;F ) is defined to be the prob-
ability that a point q is contained inside a random
closed hyperball obtained from a pair of points from
F . The lens depth LD(q;F ) is defined analogously us-
ing hyperlens instead of hyperball in the definition of
spherical depth. The spherical depth SphD(q;S) (lens
depth LD(q;S)) is also defined for an arbitrary data
set S ⊆ Rd and point q ∈ Rd. This definition is
based on counting all of the closed hyperballs (hyper-
lenses), obtained from pairs of points in S, that con-
tain q. The straightforward algorithm for computing
the spherical depth (lens depth) in dimension d takes
O(dn2). The main result of this paper is an optimal al-
gorithm for computing the planar (bivariate) spherical
depth. The algorithm takes O(n log n) time. By re-
ducing the problem of Element Uniqueness, we prove
that computing the spherical depth (lens depth) re-
quires Ω(n log n) time. Some geometric properties of
spherical depth (lens depth) are also investigated in this
paper. These properties indicate that simplicial depth
(SD) is linearly bounded by spherical depth and lens
depth (in particular, LD ≥ SphD ≥ 2

3 SD). To illus-
trate these relationships, some experimental results are
provided. In these experiments on random point sets,
the bounds of SphD ≥ 2SD and LD ≥ 1.2SphD are
achieved.

1 Introduction

The rank statistic tests play an important role in
univariate non-parametric statistics. If one attempts
to generalize the rank tests to the multivariate case,
the problem of defining a multivariate order statistic
will occur. It is not clear how to define a multivariate
order or rank statistic in a meaningful way. One
approach to overcome this problem is to use the notion
of data depth. Data depth measures the centrality
of a point in a given data set in non-parametric
multivariate data analysis. In other words, it indicates
how deep a point is located with respect to the data set.

Over the last decades, various notions of data
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depth such as halfspace depth (Hotelling, 1929, [9, 17];
Tukey, 1975, [19]), simplicial depth (Liu, 1990, [11]) Oja
depth (Oja, 1983, [15]), regression depth (Rousseeuw
and Hubert, 1999, [16]), and others have emerged as
powerful tools for non-parametric multivariate data
analysis. Most of them have been defined to solve
specific problems in data analysis. They are different
in application, definition, and geometry of their central
regions (regions with the maximum depth). Some
notable research on the algorithmic aspects of planar
data depth can be found in [1, 2, 4, 5, 6, 7, 12, 14, 16].

In 2006, Elmore, Hettmansperger, and Xuan [8]
defined another notion of data depth named spherical
depth. It is defined as the probability that point q
is contained in a closed random hyperball with the
diameter xixj , where xi and xj are two random
points from a common distribution function F . These
closed hyperballs are known as influence regions of the
spherical depth function. In 2011, Liu and Modarres
[13], modified the definition of influence region, and
defined lens depth. Each lens depth influence region
is defined as the the intersection of two hyperballs
B(xi, d(xi, xj)) and B(xj , d(xi, xj)). These influ-
ence regions of spherical depth (lens depth) are the
multidimensional generalization of Gabriel circles
(lunes) in the definition of the Gabriel Graph (Relative
Neighbourhood Graph) [13, 18]. Spherical depth and
lens depth have some nice properties including affine
invariance, symmetry, maximality at the centre and
monotonicity. All of these properties are explored in
[8, 13, 20].

Although we focus on the planar case here, a no-
table characteristic of the spherical depth (lens depth)
is that its time complexity grows linearly in the
dimension d while for most other data depths the time
complexity grows exponentially. To the best of our
knowledge, the current best algorithm for computing
the spherical depth (lens depth) is the straightforward
algorithm which takes O(dn2).

In this paper, we present an O(n log n) algorithm
for computing the spherical depth in R2. Furthermore,
we reduce the problem of Element Uniqueness to
prove that computing the spherical depth (lens depth)
of a query point requires Ω(n log n) time. We also
investigate some geometric properties of spherical
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depth and lens depth. These properties lead us to
bound the simplicial depth, spherical depth, and lens
depth of a point in terms of one another. Finally, some
experiments are provided to illustrate the relationship
between spherical depth, lens depth, and simplicial
depth.

2 Spherical Depth and Lens Depth

Definition: The spherical (lens) influence region of xi

and xj in Rd is a closed hyperball (hyperlens) defined
as follows:

Sph(xi, xj) =

�
t | d(t, xi + xj

2
) ≤ d(xi, xj)

2

�

L(xi, xj) = {t | max {d(t, xi), d(t, xj)} ≤ d(xi, xj)} ,

where d(., .) is the Euclidean distance. Figures 1 and 2
show the Sph(xi, xj) and L(xi, xj) in R2, respectively.

Figure 1: Sph(xi, xj) Figure 2: L(xi, xj)

Definition: For S = {x1, ..., xn} ⊂ Rd and q ∈ Rd.
The spherical (lens) depth of a q with respect to S, is
defined as a proportion of Sph(xi, xj) (L(xi, xj)), 1 ≤
i < j ≤ n that contain q. Using the indicator function
I , these definitions can be represented by (1) and (2).

SphD(q;S) =
1�
n
2

�
n�

1≤i<j≤n

I(q ∈ Sph(xi, xj)) (1)

LD(q;S) =
1�
n
2

�
n�

1≤i<j≤n

I(q ∈ L(xi, xj)) (2)

2.1 Algorithms for Computing the Spherical Depth
of a Query Point

The current best algorithm for computing the spheri-
cal depth of a point q ∈ Rd with respect to a data set
S = {x1, x2, ..., xn} ⊆ Rd is the brute force algorithm.
This naive algorithm needs to check all of the

�
n
2

�
spher-

ical influence regions obtained from the data points to
figure out how many of them contain q. Checking all

of the spherical influence regions causes the naive algo-
rithm to take Θ(dn2). Instead of counting, we focus on
the geometric aspects of the spherical influence regions.
These geometric properties lead us to develop an op-
timal O(n log n) algorithm for the computation of the
spherical depth of q.
A proof of the following lemma which is a generalization
of Thales’ theorem1 can be found in the Appendix.

Lemma 1 For arbitrary points a, b, and t in R2, t ∈
Sph(a, b) if and only if ∠atb ≥ π

2 .

Algorithm: Using Lemma 1, we present an algorithm
to compute the spherical depth of a query point q ∈
R2 with respect to S = {x1, x2, ..., xn} ⊆ R2. This
algorithm is summarized in the following steps.

• Translating the points: Suppose that T is a
translation by (−q). We apply T to translate q
and all data points into their new coordinates. Ob-
viously, T (q) = O.

• Sorting the translated data points: In this
step we sort the translated data points based on
their angles in their polar coordinates. After doing
this step, we have ST which is a sorted array of the
translated data points.

• Calculating the spherical depth: Suppose that
xi(ri, θi) is the i

th element in ST . For xi, we define
the arrays Oi and Ni as follows:

Oi =

�
j | xj ∈ ST ,

π

2
≤ |θi − θj | ≤

3π

2

�
(3)

Ni = {1, 2, ..., n} \Oi.

Thus the spherical depth of q with respect to S can
be computed by:

SphD(q;S) = SphD(0;ST ) =
1

2

�

1≤i≤n

|Oi|. (4)

To present a formula for computing |Oi|, we define
fi and li as follows:

fi =

�
minNi − 1 if π

2 < θi ≤ 3π
2

minOi otherwise

li =

�
maxNi + 1 if π

2 < θi ≤ 3π
2

maxOi otherwise.

1Thales’ theorem: If a, b, and c are points on a circle where ac
is a diameter of the circle, then ∠abc is a right angle
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Figures 3 and 4 illustrate Oi, Ni, fi, and li in
two different cases. Considering the definitions of
fi and li,

|Oi| =
�
fi + (n− li + 1) if π

2 < θi ≤ 3π
2

li − fi + 1 otherwise.

This allows us to compute |Oi| using a pair of binary
searches.

Figure 3: θ ∈ (π2 ,
3π
2 ]. Figure 4: θ /∈ (π2 ,

3π
2 ].

Time complexity: The first procedure in the algo-
rithm takes O(n) to translate q and all data points into
the new coordinate system. The second procedure takes
O(n log n) time. In this procedure, the loop iterates n
times, and the sorting algorithm takes O(n log n). Due
to using binary search for every Oi, the running time
of the last procedure is also O(n log n). The rest of the
algorithm contributes some constant time. In total, the
running time of the algorithm is O(n log n).

Coordinate system: In practice it may be preferable
to work in the Cartesian coordinate system. Sorting by
angle can be done using some appropriate right-angle
tests (determinants). Regarding the other angle com-
parisons, they can be done by checking the sign of dot
products.

2.2 Lower Bound for Computing the the planar
Spherical Depth and Lens Depth

We reduce the problem of Element Uniqueness2 to the
problem of computing the spherical depth and lens
depth. It is known that the question of Element Unique-
ness has a lower bound of Ω(n log n) in the algebraic
decision tree model of computation [3].

Theorem 2 Computing the spherical depth of a query
point in the plane takes Ω(n log n) time.

2Element Uniqueness problem: Given a set A =
{a1, a2, ..., an}, is there a pair of indices i, j with i �= j such that
ai = aj?

Proof. We show that finding the spherical depth allows
us to answer the question of Element Uniqueness. Sup-
pose that A = {a1, a2, ..., an}, for n ≥ 2 is a given set
of real numbers. We suppose all of the numbers to be
positive (negative), otherwise we shift the points onto
the positive X-axis. For every ai ∈ A we construct four
points xi, xn+i, x2n+i, and x3n+i in the polar coordinate
system as follows:

x(kn+i) =

�
ri, θi +

kπ

2

�
; 0 ≤ k ≤ 3,

where ri =
�
1 + a2i and θi = tan−1(1/ai). Thus we

have a set S of 4n points xkn+i, for 1 ≤ i ≤ n. The
Cartesian coordinates of the points can be computed
by:

x(kn+i) =

�
0 −1
1 0

�k �
ai
1

�
; k = 0, 1, 2, 3.

See Figure 5.

We select the query point q = (0, 0), and present
an equivalent form of Equation (3) for Oj as follows:

Oj =
�
xk ∈ S | ∠xjqxk ≥ π

2

�
, 1 ≤ j ≤ 4n, (5)

We compute SphD(q;S) in order to answer the Element
Uniqueness problem. Suppose that every xj ∈ S is a
unique element. In this case, |Oj | = 2n + 1 because,
from (5), it can be figured out that the expanded Oj is
as follows:





{xn+1, .., xn+j , x2n+1, .., x3n, x3n+j , .., x4n}; 1 ≤ j ≤ n

{x2n+1, .., xn+j , x3n+1, .., x4n, xj−n, .., xn}; n < j ≤ 2n

{x3n+1, .., xn+j , x1, .., xn, xj−n, .., x2n}; 2n < j ≤ 3n

{x1, .., xj−3n, xn+1, .., x2n, xj−n, .., x3n}; otherwise.

Figure 5: A representation of A, S, and duplications in
these sets
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Referring to Lemma 1 and Equation (4),

SphD(q;S) =
1

2

�

1≤j≤4n

(2n+ 1) = 4n2 + 2n.

Now suppose that there exist some i �= j with xi = xj

in S. In this case, from (5), it can be seen that:

|O(kn+i) mod 4n| = |O(kn+j) mod 4n| = 2n+ 2,

where k = 0, 1, 2, 3 (see Figure 5). As an example, for
k = 0, |Oj | = |Oi| = 2n+ 2 because the expanded form
of these two sets is as follows: (without loss of generality,
assume i < j < n)

Oi = Oj = {xn+1, .., xn+j , x2n+1, .., x3n,

x3n+i, x3n+j , x3n+j+1, .., x4n}.

Lemma 1 and Equation (4) imply that:

SphD(q;S) ≥ 1

2
(8 +

�

1≤j≤4n

(2n+ 1)) = 4n2 + 2n+ 4.

Therefore the elements of A are unique if and only if the
spherical depth of (0, 0) with respect to S is 4n2 + 2n.
This implies that the computation of spherical depth re-
quires Ω(n log n) time. It is necessary to mention that
the only computations in the reduction are the construc-
tion of S which takes O(n) time. �

Note: Instead of four copies of the elements of A, we
could consider two copies of such elements to construct
S. However, the depth calculation becomes more com-
plicated in this case.

Theorem 3 Computing the lens depth of a query point
in the plane takes Ω(n log n) time.

Proof. Suppose that B = {b1, b2, ..., bn}, for n ≥ 2 is
a given set of real numbers. Without loss of generality,
let these numbers to be positive (see the proof of Theo-
rem 2). We construct set S = {xi, xn+i} of 2n points in
the polar coordinate system such that xi = (bi, 0) and
xn+i = (bi,π/3). See Figure 6. We select the query
point q = (0, 0), and define Lj as follows:

Lj = {xk ∈ S | q ∈ L(xj , xk)} , 1 ≤ j ≤ 2n. (6)

Using Equation (6), the unnormalized form of Equa-
tion (2) can be presented by:

LDS(q) =
1

2

�

1≤j≤2n

|Lj |. (7)

We solve the problem of Element Uniqueness by com-
puting LDS(q). Suppose that every xj ∈ S is a
unique element. In this case, it can be verified that

Lj = {x(n+j) mod 2n} (see Lemma 9 in the Appendix).
Equation (7) implies that:

LDS(q) =
1

2

�

1≤j≤2n

1 = n.

Now assume that there exists some i �= j with xi = xj in
S. In this case, Lj = Li = {x(n+i) mod 2n, x(n+j) mod 2n}
and Ln+i = Ln+j = {xi mod 2n, xj mod 2n} which means
that

LDS(q) =
1

2

�

1≤j≤2n

|Lj | = n+ 2.

In fact,

LDS(q) =
1

2

�

1≤j≤2n

|Lj | = n+ 2c, (8)

where c is the number of duplications in the elements of
S. Therefore the elements of S are unique if and only if
c = 0 in Equation 8. This implies that the computation
of lens depth requires Ω(n log n). Note that all of the
other computations in this reduction take O(n). �

Note: This technique of reduction can be generalized
to prove that computing a generalization of spherical
and lens depth called β−skeleton depth (β > 1) [20]
also requires Ω(n log n) time.

Figure 6: A representation of B, S, and duplications in
these sets

3 Relationships Among Spherical Depth, Lens
Depth, and Simplicial Depth

Theorem 4 For S ⊂ Rd and q ∈ Rd, LD(q;S) ≥
SphD(q;S).

Proof. From the definition of the spherical (lens) influ-
ence regions of any arbitrary pair of points xi and xj
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in S, it can be seen that Sph(xi, xj) ⊂ L(xi, xj). Hence
Equation (9) is sufficient to complete the proof.

SphD(q;S) =
�

xi,xj∈S

I(q ∈ Sph(xi, xj))

≤
�

xi,xj∈S

I(q ∈ L(xi, xj)) = LD(q;S)
(9)

�

Definition: The simplicial depth of q ∈ Rd with re-
spect to the data set S = {x1, ..., xn} ⊂ Rd is defined
by:

SD(q;S) =
1�
n

d+1

�
�

(x1,...,xd+1)∈S

I(q ∈ Conv[x1, ..., xd+1]),

(10)
where Conv[x1, ..., xd+1] is a closed simplex formed by
d+ 1 points of S [11].

Definition: For a point q ∈ R2 and a data set S con-
sisting of n points in R2, we define Bin(q;S) to be the
set of all closed sphere areas, out of

�
n
2

�
possible sphere

areas, that contain q. We also define Sin(q;S) to be
the set of all closed simplices, out of

�
n
3

�
possible closed

simplices defined by S, that contain q.

Lemma 5 Suppose that q is a point in a given convex
hull H obtained from a data set S in R2. q is covered
by the union of sphere areas defined by S.

See the Appendix for a proof of this Lemma.

Lemma 6 Suppose that S = {a, b, c} is a set of points
in R2. For every q ∈ R2, if |Sin(q;S)| = 1, then
|Bin(q;S)| ≥ 2.

A proof of this Lemma can also be found in the Ap-
pendix. Another form of Lemma 6 is that if q ∈ �abc,
then q falls inside at least two sphere areas out of three
sphere areas Sph(a, b), Sph(c, b), and Sph(a, c).

Lemma 7 For S = {x1, ..., xn} ⊂ R2,

|Bin(q;S)|
|Sin(q;S)|

≥ 2

n− 2
.

Proof. We suppose that Sph(xi, xj) ∈ Bin(q;S) (see
Figure 7). There exist at most (n − 2) triangles in
Sin(q;S) such that xixj is an edge of them. Let us
consider �xixjxk from these triangles. Referring to
Lemma 6, we know that q falls inside at least one of
Sph(xi, xk) and Sph(xj , xk). It means that there exist
at most (n − 2) triangles in Sin(q;S) such that xixk

(respectively xjxk) is an edge of them. As can be seen,

the triangle �xixjxk is counted at least two times, one
time for Sph(xi, xj) and one time for Sph(xi, xk) (or
Sph(xj , xk) ). So, we can say that for every sphere area
from Bin(q;S), such as Sph(xi, xj) there exist at most
(n−2)

2 distinct triangles, triangles with only one common
side, in Sin(q;S). Consequently, (11) can be obtained.

|Bin(q;S)|
|Sin(q;S)|

≥ 2

(n− 2)
(11)

�

Figure 7: Sphere area Sph(xi, xj) contains point q

Theorem 8 For q ∈ R2 and a given data set S which
consists of n points in R2, SphD(q;S) ≥ 2

3 SD(q;S).

Proof. From the definitions of spherical depth and sim-
plicial depth, it is clear that:

SphD(q;S)

SD(q;S)
=

|Bin(q;S)|
(n2)

|Sin(q;S)|
(n3)

=
|Bin(q;S)|
|Sin(q;S)|

× (n− 2)

3
. (12)

From (12) and Lemma 7, it can be seen that

SphD(q;S)

SD(q;S)
≥ 2

3
⇒ SphD(q;S) ≥ 2

3
SD(q;S).

�

4 Experiments

To support Theorem 8 and Theorem 4, we compute the
spherical depth, lens depth, and the simplicial depth
of the points in three random sets Q1, Q2, and Q3

with respect to data sets S1, S2, and S3, respectively.
The elements of Qi and Si are some randomly gener-
ated points (double precision floating point) within the
square A = {(x, y)|x, y ∈ [−10, 10]}. The results of our
experiments are summarized in Table 1. Every cell in
the table represents the corresponding depth of qi with
respect to data set Si, where qi ∈ Qi. The cardinalities
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of Qis and Sis are as follows: |Q1| = 100, |S1| = 750,
|Q2| = 750, |S2| = 2500, |Q3| = 2500, |S3| = 10000.
As can be seen in Table 1, there are some gaps between
experimental bounds for random points and the the-
oretical bounds. These gaps motivate us to do more
research in this area.

(t1;S1) (t2;S2) (t3;S3)
Min Max Min Max Min Max

SD 0.00 0.25 0.00 0.25 0.00 0.24
SphD 0.01 0.50 0.00 0.50 0.00 0.50
LD 0.05 0.61 0.05 0.61 0.04 0.61
SphD
SD 2.00 ∞ 2.00 ∞ 2.03 ∞

LD
SD 2.43 ∞ 2.44 ∞ 2.44 ∞
LD

SphD 1.21 8.11 1.22 23.16 1.22 157.16

Table 1: Experimental results

5 Conclusion

In this paper, we developed an optimal Θ(n log n) al-
gorithm to compute the spherical depth of a bivariate
query point with respect to a given data set in R2. In
addition to the time complexity, the main advantage of
this algorithm is it simplicity of implementation. To ob-
tain a lower bound for computing the planar spherical
(lens) depth, we reduced the Element Uniqueness prob-
lem to the computing of spherical (lens) depth. We also
investigated some geometric properties which lead us to
find some theoretical relationships (i.e. SphD ≥ 2

3SD
and LD ≥ SphD) among spherical depth, lens depth,
and simplicial depth. Finally, some experimental results
(i.e. SphD ≥ 2SD and LD ≥ 1.2SphD) are provided.
More research on this topic is needed to figure out if
the real bounds are closer to the experimental bounds
or to the current theoretical bounds.
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Appendix

Lemma 1: For arbitrary points a, b, and t in R2, t ∈
Sph(a, b) if and only if ∠atb ≥ π

2
.

Proof. If t is on the boundary of Sph(a, b), the Inscribed
Angle Theorem (Theorem 2.2 in [10]) suffices as the proof in
both directions. For the rest of the proof, by t ∈ Sph(a, b),
we mean t ∈ int Sph(a, b).

⇒) For t ∈ Sph(a, b), suppose that ∠atb < π/2 (proof by
contradiction). We continue the line segment at to cross
the boundary of Sph(a, b). Let t� be the crossing point (see
Figure 8). Since ∠atb < π

2
, then, ∠btt� is greater than

π
2
. Let ∠btt� = π

2
+ �1; �1 > 0. From the Inscribed Angle

Theorem, we know that ∠at�b is a right angle. The angle
tbt� = �2 > 0 because t ∈ Sph(a, b). Summing up the angles
in �tt�b, as computed in (13), leads to a contradiction. So,
this direction of proof is complete.

∠tt�b+∠t�bt+∠btt� ≥ π

2
+�2+(

π

2
+�1) = π+�1+�2 > π (13)

⇐) If ∠atb = π
2
+ �1; �1 > 0, we prove that t ∈ Sph(a, b).

Suppose that t /∈ Sph(a, b) (proof by contradiction). Since
t /∈ Sph(a, b), at least one of the line segments at and bt
crosses the boundary of Sph(a, b). Without loss of gener-
ality, assume that at is the one that crosses the boundary
of Sph(a, b) at the point t� (see Figure 9). Considering the
Inscribed Angle Theorem, we know that ∠at�b = π

2
and con-

sequently, ∠bt�t = π
2
. The angle ∠t�bt = �2 > 0 because

t /∈ Sph(a, b). If we sum up the angles in the triangle �tt�b,
the same contradiction as in (13) will be implied. �

Lemma 5: Suppose that q is a point in a given convex
hull H obtained from a data set S in R2. q is covered by the
union of sphere areas defined by S.

Proof. It can be seen that there is at least one triangle, de-
fined by the vertices ofH, that contains q. We prove that the
union of the sphere areas defined by such triangle contains
q. See Figure 10. We prove this statement by contradiction.
Suppose that q is covered by none of Sph(a, b), Sph(a, c),
and Sph(b, c). Therefore, Lemma 1 implies that none of the
angles ∠aqb, ∠aqc, and ∠bqc is greater than or equal to π

2

which is a contradiction because at least one of these angles
should be at least 2π

3
in order to get 2π as their sum. �

Lemma 6: Suppose that S = {a, b, c} is a set of points in
R2. For every q ∈ R2, if |Sin(q;S)| = 1, then |Bin(q;S)| ≥ 2.

Proof. We prove the lemma by contradiction. By Lemma 5,
Bin(q;S) ≥ 1. Suppose that |Bin(q;S)| = 1. If q is lo-
cated on the vertices of �abc, it clear that |Bin(q;S)| ≥ 2
thus, we suppose that q is not located on the vertices of
�abc. Without loss of generality, we suppose that q falls
inside Sph(a, b). For the rest of the proof, we focus on the
relationships among the angles ∠aqb, ∠cqa, and ∠cqb (see
Figure 10). Since q is inside �abc, ∠aqb ≤ π. Consequently,
at least one of ∠cqa and ∠cqb is greater than or equal to π

2
.

Figure 8: t ∈ Sph(a, b) Figure 9: t /∈ Sph(a, b)

So, Lemma 1 implies that q will fall inside at least one of
Sph(a, c) and Sph(b, c). Hence, |Bin(q;S)| = 1 contradicts
|Sin(q;S)| = 1. This means that the case |Bin(q;S)| ≥ 2.
As an illustration, in Figure 10, for the points inside the
hatched area |Bin(q;S)| = 3.

�

Lemma 9 Lj = {x(n+j) mod 2n} if every xj (1 ≤ j ≤ 2n) is
a unique element in S , where S = {(bi, 0), (bi,π/3) | bi >
0, 1 ≤ i ≤ n}, and Lj = {xk ∈ S | q ∈ L(xj , xk)}.

Proof. Suppose that Lj = {xk, x(n+j) mod 2n} for some
xk ∈ S (k �= j). We prove that such xk does not exist. If
∠xjOxk = 0, it is obvious that O /∈ L(xj , xk) which means
that xk cannot be an element of Lj . For the case ∠xjOxk =
π/3, let us assume that O ∈ L(xj , xk) which is equivalent
with d(xj , xk) ≥ d(O, xk) and d(xj , xk) ≥ d(O, xj). From
the definitions d(O, xk) = bk, d(O, xj) = bj , and from the
cosine formula, d2(xj , xk) = b2j + b2k − 2bkbjcos(π/3). There-
fore,

d(xj , xk) ≥ d(O, xk) ⇒ b2j−bjbk ≥ 0 ⇒ bj−bk ≥ 0 ⇒ bj ≥ bk

and

d(xj , xk) ≥ d(O, xj) ⇒ b2k−bjbk ≥ 0 ⇒ bk−bj ≥ 0 ⇒ bk ≥ bj .

�

Figure 10: Triangle abc contains point q
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