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Abstract

Fixed-angle chains have been used to model protein
backbones [4] and robotic arm motions [5]. Benbernou
and O’Rourke proved several structural theorems for
finding the maximum 3D span of fixed-angle chains: the
largest distance achievable between the two endpoints
[1][2]. Borcea and Streinu used different methods to de-
velop an algorithm which computes this span for any
chain in polynomial time, and for chains with equal
angles greater than or equal to π/3 in linear time [6].
We use Benbernou and O’Rourke’s most general struc-
tural theorem to develop a new algorithm which also
computes the maximum span for any fixed-angle chain
and the configuration in which this is achieved. Our
algorithm is purely geometric in nature, meaning that
it consists of only straight-edge and compass construc-
tions together with some list-keeping. The algorithm
has complexity O(n2) for any chain with equal angles,
known also as α-chains. We do not claim that it runs
in polynomial time for all chains but discuss why it will
do so for those likely to be used in any modeling appli-
cation.

1 Introduction

Fixed-angle chains consist of serially connected line seg-
ments, each attached to its predecessor at an angle
0◦ < αi < 180◦ but capable of spinning at the joint
while the angle between the two segments remains con-
stant. Soss proved that finding the maximum span of
flat configurations of the chain is NP-hard, but showed
that the 3D maxspan is not always achieved by a flat
configuration [3]. Benbernou and O’Rourke primarily
focused on the maximum 3D span for restricted classes
of chains. They conjectured that all α-chains are solv-
able in quadratic time and our results verify this (it
is possible that Borcea and Streinu also show this for
chains with α < π/3 but we are not aware of this re-
sult). Our algorithm directly depends on their n-Chain
Partition Theorem which we state after introducing no-
tation, most of which is consistent with [2].

Let a chain C have vertices (v0, v1, . . . , vn). The fixed
joint angle is αi = ∠vi−1vivi+1. We denote link i (the
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line segment vi−1vi) as Li. A flat configuration for C
is one in which all vertices lie in the same plane. The
zigzag or trans-configuration is the flat configuration in
which the direction of the joint turns alternates. The
chain C is in maxspan configuration when it is posi-
tioned to maximize the distance |v0vn|. We refer to the
position of vn in maxspan configuration as the maxpt .

Theorem 1 (n-Chain Partition Theorem) [2] The
planar partition for an n-chain C (described below) in
maxspan configuration has the following two properties:

1. The vertices shared between adjacent planar sec-
tions all lie along the line L through v0vn.

2. The last planar section cannot contain just one link
vn−1vn.

This implies that in maxspan configuration the ver-
tices v0, v1, v2 and vn all lie in the same plane. Further-
more if the maxspan configuration is not flat, then the
vertices can be partitioned as follows: “Group v0, . . . vi
into one section if they lie in plane Π1, but vi+1 does not
lie in this plane. Then group vi+1, . . . vj into a second
section if they lie in plane Π2 �= Π1, and vj+1 does not
lie in Π2. And so on” [2]. The vertices v0, vi, vj and vn
all lie on the same line, and therefore all lie in the plane
Π1. See Fig. 1.

Figure 1: A 12-chain in maxspan configuration. Here
vertices v0, v2, v4, v6, v8, v10 and v12 are collinear.

Our search for the maxpt begins by laying out C in
the zigzag configuration mentioned above. Note that
some chains will be self-crossing when laid out this way
and may possibly be self-crossing in the maxspan con-
figuration as well. While these chains may not be of
practical importance our method does not exclude this
possibility.

The idea behind our algorithm is to search for the
maxpt by systematically allowing the links to rotate out
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of Π1 beginning with Ln, then Ln−1, etc. At each step
we observe which points in Π1 are reachable by vn under
all possible rotations of the free links. We then identify
those points which could conceivably be the maxpt for
C and exclude the rest from further consideration. At
each step new points reachable by vn will be found, and
points found in previous iterations may be excluded.

2 The subchain Cn−4 = (vn−4, vn−3, vn−2, vn−1, vn)

We begin by allowing Ln to rotate out of Π1 about Ln−1

while maintaining a constant angle αn−1 at the point of
attachment vn−1. As it does so, the locus of vn is a
circle orthogonal to Π1 centered at the projection of
vn onto Ln−1 extended. This circle intersects Π1 in
the original position of vn and in it’s reflection about
Ln−1. We denote this reflection vn(n − 1). See the
circle in Fig. 2. Note that for the subchain Cn−3 =
(vn−3, vn−2, vn−1, vn) the maxspan is |vn−3vn| and is
achieved in the trans-configuration [1].

Now allow Ln−1 to rotate similarly about Ln−2 while
also allowing Ln to rotate about Ln−1. The points
traced by vn in this process comprise a partial sphere
with center vn−2 and radius |vn−2vn|. The intersection
of this partial sphere with Π1 is two circular arcs, each
also centered at vn−2 with radius |vn−2vn|. See Fig. 2.

Figure 2: The circle generated by vn from the rotation
of Ln, the partial sphere generated by vn from the rota-
tions of Ln and Ln−1, and the arcs which are the traces
of the partial sphere in Π1.

The endpoints of the two arcs merit further discus-
sion. These are reached in a flat configuration of the
chain while the interior points are reached when Ln and
Ln−1 are rotated out of Π1.

Observation 1 Assuming again that C is in trans-
configuration there are two cases.

1. The points vn and vn(n − 1) lie on the same
side of Ln−2 extended. Then this line does not
pass through the circle created by the rotation of
Ln and these are the arc endpoints on one side.
Their reflections about Ln−2 are the arc endpoints
on the other side which we denote vn(n − 2) and
vn(n− 1, n− 2).

2. The points vn and vn(n − 1) lie on opposite
sides of Ln−2. Then Ln−2 extended goes through
the circle created by the rotation of Ln. In this case
the arc endpoints on one side are vn(n − 1, n − 2)
and vn, with endpoints vn(n− 1) and vn(n− 2) on
the other.

We illustrate these cases in Fig. 3.

Figure 3: The two cases for arc endpoints following ro-
tations of the last two links in the chain.

We are now in a position to find the maxspan of Cn−4.
Note that we can do so without taking into account the
points generated by the rotation of Ln−2 at vn−3. This
rotation would move any point on the partial sphere in a
circle about Ln−3, with each point on the circle remain-
ing equidistant from any point on that line, specifically
vn−4. So none of these new points would be farther from
vn−4 than the points on the two arcs.

To find the point on the arcs farthest from vn−4 we
use the following basic facts.

Lemma 2 Let C be a circle with center B, let A be an
arc on C, and let P be a point in the plane of C other
than B. The line PB intersects C in two points. Let
Q be the farther of these points from P and let S be the
closer. Then

1. the farthest point on C from P is Q and the closest
such point is S.

2. if Q is on A then Q is the farthest point on A from
P . If Q is not on A then the point on A closest to
Q is the farthest point on A from P .

3. let f be a distance function from P to the points on
A, traversed from one endpoint to the other. Then
f is either

(a) Decreasing with a maximum at the starting
endpoint.

(b) Increasing to a maximum then decreasing.

(c) Increasing with a maximum at the terminal
endpoint.

Lemma 3 Let l be a line, P and Q two points not on
l, and Q� the reflection of Q across l. If P and Q are
on the same side of l, then |PQ| < |PQ�|, otherwise
|PQ| > |PQ�|.
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We now use these to find the maxpt of Cn−4, the far-
thest point on the arcs from vn−4. Since one of these
arcs is on the same side of Ln−2 as vn−4, all points on
this arc can be eliminated by Lemma 3. Now consider
the ray vn−4vn−2. If this ray intersects the remain-
ing arc then the point of intersection is the maxpt by
Lemma 2, with maxspan equal to |vn−4vn−2|+|vn−2vn|.
Otherwise the maxpt is an arc endpoint. If the ray
passes to the left of the arc (when viewed from Ln−2)
the maxpt is the left-hand endpoint, otherwise the right,
again by Lemma 2. The second case is illustrated in Fig.
4. The chain shown is a 4-chain so this is the final step
in the algorithm.

Figure 4: The ray v0v2 passes to the right of the upper
arc so the maxpt is v4(3, 2). The maxspan configuration
is flat and is achieved by first reflecting L3 and L4 about
L2, then L4 about L3. The maxspan is |v0v4(3, 2)|.

To illustrate the first case start with the chain on the
left in Fig. 4 but with L1 a bit shorter so that the ray
v0v2 intersects the upper arc. This intersection is the
maxpt and the maxspan configuration will occur with
L3 and L4 rotated out of Π1. See Fig. 5.

Figure 5: The maxspan configuration with links L3 and
L4 rotated out of Π1. The maxspan is |v0v2|+ |v2v4|.

3 The subchain Cn−5

We have seen that the set of points reachable by vn
under all rotations of the last two links is a partial sphere
whose trace in Π1 is two arcs symmetric about Ln−2.
We now wish to describe the points in Π1 generated by
the additional rotation of Ln−3. Referring again to Fig.
2 the partial sphere consists of a set of circles orthogonal
to Π1 centered on Ln−2 extended. When rotated about
Ln−3 each of these circles will generate another partial
sphere whose trace on Π1 is again two arcs, this time
symmetric about Ln−3. The result is an envelope of
circular arcs. We will refer to this set of points on Π1

as Rn−3. Some of the arcs in this envelope are shown
in Fig. 6.

Figure 6: The envelope of arcs generated by the rotation
of Ln−2 about Ln−3.

The shape of these arc envelopes is determined by
repeatedly applying Observation 1. If P and P � are on
the original two arcs and symmetric about Ln−2, then
the arcs generated by the circle containing these points
depend on whether P and P � are on the same or different
sides of Ln−3. For the chain in Fig. 6 all points on both
of the original two arcs are on the same side of Ln−3

extended. When this is not the case Rn−3 can take on
different appearances as in Fig. 7 below.

Figure 7: The boundary of an envelope of arcs when
Ln−3 extended intersects one of the original arcs. P
and P � lie on the same side of Ln−3 so are on the same
arc. Q and Q� do not so Q and Q�� are on the same arc.

Regardless of appearance in every case Rn−3 has the
following properties:

1. Rn−3 is symmetric about Ln−3 extended.

2. Rn−3 consists of two regions on either side of Ln−3,
each closed and bounded by circular arcs.

3. Each of the eight points in Π1 reachable by vn is an
endpoint for an arc on the boundary of Rn−3. If the
line containing Ln−3 intersects one of the original
arcs there may be additional arc endpoints on this
line.

Looking ahead we observe that when Ln−4 is allowed
to rotate it will result in Rn−4, the “envelope of an en-
velope” of arcs, with Rn−3 ⊂ Rn−4. As the complexity
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of Rn−k increases with each subsequent link rotation we
need a way to keep our search for the maxpt as simple as
possible. The next result is dedicated to this purpose.

3.1 Trimming

In this section we characterize the points in Rn−3, n ≥
5, that could possibly be a maxpt. For this purpose
we define the “outer” boundary arcs (or arc portions)
of Rn−3. Let T be a line orthogonal to Ln−3 which
intersects Rn−3. By symmetry there exist two points
on T in Rn−3, one on each side, farthest from Ln−3.
The set of all such points form the outer boundary arcs
which we denote On−3. The arcs in On−3 are shown in
bold colors in Fig. 8. The next theorem allows us to
exclude all points in Rn−3 except those in On−3 from
further consideration.

Theorem 4 Only those points on On−3 can be a maxpt
for n-chains with n ≥ 5. Furthermore, only these points
can generate arcs via subsequent link rotations that could
possibly contain a maxpt.

Proof. Let Q be a point on the interior of Rn−3. Then
there exists a circle C centered at Q in Rn−3 as well.
Since the line v0Q intersects C at two points, one of
which is farther from v0 than Q, Q is not a maxpt.
Now let Q� be the reflection of Q about Ln−3, Q

�� the
reflection of Q� about Ln−4, and D the disk bounded by
C. The link rotation about Ln−4 will generate arcs with
endpoints Q and Q� or Q and Q�� in Rn−4. Arcs will be
generated for all points in D in a similar manner. So if
A is a point on one of these arcs there will exist a disk
centered at A which consists of points belonging to the
corresponding arcs with endpoints in D. Therefore A
will be an interior point of Rn−4 and can therefore not
be a maxpt by the preceding argument.

Now let Q be a point on the boundary of Rn−3 but
not in On−3. If v0 is on the same side of Ln−3 as Q, then
Q cannot be a maxpt by Lemma 3. Otherwise let T be
the line orthogonal to Ln−3 that contains Q. Then T
also contains a point S in On−3 farther from Ln−3 than
Q. Now |v0Q| < |v0S| by the triangle inequality and Q
is not a maxpt. So only points in On−3 can be a maxpt.
Finally again let A be a point on an arc with endpoints
in D as above. Then a line through A perpendicular
to Ln−4 will contain a point in Rn−4 farther from v0
than A as in the preceding argument and A can not be
a maxpt.

�

These arguments generalize immediately to the outer
boundary arcs of Rn−k for 3 ≤ k ≤ n − 1. So in each
iteration we can confine our search for the maxpt to
points on these outer boundary arcs.

The process for finding the endpoints of the outer
boundary arcs is illustrated in Fig. 8. If a line through

the center of a boundary arc parallel to Ln−3 intersects
the arc, then this intersection becomes a new arc end-
point. Portions of the arc below this line are excluded
as are any arcs completely below such a line. We refer
to this process as trimming the boundary arcs.

Figure 8: The only points in Rn−3 which can be a maxpt
for any chain containing Cn−5 lie on the outer boundary
arcs On−3.

3.2 Finding the maxpt on On−3

We now turn our attention to the task of locating the
maxpt on the set of trimmed boundary arcs On−3. This
is simplified by a result which, for k = 3 is a direct
consequence of Lemma 2. A general proof for arbitrary
k is omitted due to lack of space.

Theorem 5 Let On−3 be the set of outer boundary arcs
described above and let P be a point in Π1. Define a dis-
tance function f from P to the points on On−3 (on the
side of Ln−3 opposite P ), traversed from one endpoint
to the other. Then f is either

1. Decreasing with a maximum at the starting end-
point.

2. Increasing to a maximum then decreasing.

3. Increasing with a maximum at the terminal end-
point.

This result is used to create a simple algorithm for
locating the farthest point on On−3 from any point P
in Π1. If the farthest point from P on any arc A in
On−3 is on the interior of A then this is the farthest
point from P in On−3. If the farthest point from P for
two consecutive arcs is a shared endpoint then this is the
farthest point from P in On−3. Otherwise the farthest
such point is the starting or terminal arc endpoint in
On−3.

As discussed in Section 2 the farthest point from P
on each arc A can be determined by drawing a ray from
P through the center of A. If the ray intersects A then
this intersection is the point farthest from P . Otherwise
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the arc endpoint closest to the ray is the point farthest
from P .

Algorithm 1. Maxpt Algorithm

Input: A point P in Π1 and the set of connected
arcs On−k, 2 ≤ k ≤ n − 1, including arc centers,
endpoints and radii.

Output: The point M in On−k farthest from P .

1. If the farthest point on Arc 1 from P is the LH
endpoint then stop. This is M .

2. If the farthest point on Arc 1 from P is on the
interior of the arc then stop. This is M .

3. Go to Step 1 and repeat with the next arc. If there
are no more arcs then the RH endpoint of the last
arc is M .

As an example we use the algorithm to find the maxpt
of the 5-chain shown in Fig. 9. We work with the arcs on
the side of L2 opposite v0. Begin with the leftmost arc
as seen from L2. Its center is v3 and the closest point to
ray v0v3 on this arc is the RH endpoint v5. The center
of the next (red) arc is v2 and the closest point to ray
v0v2 on this arc is the LH endpoint v5. Thus v5 is the
maxpt M .

Figure 9: The farthest point from v0 on Arc 1 is the RH
endpoint v5. The farthest such point on Arc 2 is the LH
endpoint, also v5. So v5 is the maxpt and the maxspan
is |v0v5| achieved in the trans-configuration.

We are now in a position to describe our general al-
gorithm. Start with On−2, the arcs from the rotations
of Ln and Ln−1. In each iteration the rotation of link
Li+1 about Li creates an envelope from which we find
the new set of outer boundary arcs Oi. Continue until
O2 is found. The farthest point M on O2 from v0 is the
maxpt and |v0M | is the maxspan.

4 Boundary Arc Creation

There is one part of this process which has not yet been
well described. The question is how to determine the
new set of outer boundary arcs Oi from those in Oi+1.

Assume that Oi+1 is known and we wish to find Oi.
The situation is like that shown in Fig. 6 except that
there are now multiple connected arcs symmetric about
Li+1 instead of just one. Each symmetric pair of arcs is
the trace of a partial sphere. Each pair then generates
its own arc envelope when Li+1 is rotated about Li.
The outer boundary arcs of this union of envelopes is
Oi which can be found via the following algorithm. Its
justification is given in the Appendix.

Algorithm 2. Boundary Arc Creation Algo-
rithm

Input: Oi+1, the set of trimmed boundary arcs
(endpoints, centers and radii) symmetric about
Li+1, and vi.

Output: The trimmed boundary arcs Oi.

1. Use the Maxpt Algorithm to find Mi+1 and M �
i+1,

the points on Oi+1 farthest from vi.

2. Case 1: Mi+1 and M �
i+1 are on the same side

of Li. The arc centered at vi with Mi+1 and M �
i+1

as endpoints is on Oi. Arcs or arc portions between
this new arc and Li are deleted, all other arcs are
kept. Trim the remaining arcs on each side of this
new arc with respect to Li, then reflect all about
Li. This collection of arcs is Oi.

3. Case 2: Mi+1 and M �
i+1 are on opposite sides

of Li. Reflect M �
i+1 across Li and call this point

M ��
i+1. The arc centered at vi with endpoints Mi+1

and M ��
i+1 is on Oi. If M

��
i+1 is to the left of Mi+1 as

seen from Li+1 then reflect all arcs and arc portions
to the left of Mi+1 on Oi+1 first across Li+1, then
Li. These reflected arcs belong to Oi as do those
to the right of Mi+1. If M ��

i+1 is to the right of
Mi+1 then the process is identical except with arcs
to the right of Mi+1. Trim the remaining arcs on
each side of the new arc with respect to Li, then
reflect all about Li. This collection of arcs is Oi.

In each case only one “new” boundary arc in Oi is cre-
ated on each side of Li. It is the arc of largest radius in
the entire envelope. The remaining arcs were either al-
ready on Oi+1 or are their reflections from the other side
of Li+1 about Li. Case 2 of this algorithm is illustrated
in Fig. 10.

5 The Maxspan Algorithm

We now give the entire algorithm.

Algorithm 3. Maxspan Algorithm

Input: A chain C = (v0, v1, . . . , vn) in flat zigzag
configuration.
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Figure 10: Creation of O2 (thick arcs) from O3 (thin
arcs) as described in Case 2. The farthest point from
v2 on O3 is v7(4). Its reflection about L3 is on the
opposite side of L2, so the other new arc endpoint is
a double reflection v7(4, 3, 2). Arcs on O3 to the left
of v7(4) are also reflected across both L3 and L2, then
deleted. The rightmost arc on O2 remains as part of O3.
Trimming with respect to L2 then occurs (separately)
on both sides of the new (green) arc but is not shown.

Output: The maximum span of C expressed in the
form |v0vi()|+ |vi()vj()|+ · · ·+ |vk()vn()|.

1. Initialize. Find On−2. Record the center, radius,
and endpoints. Let i = n− 3.

2. Find Oi, the new (trimmed) outer boundary
arcs. Use the boundary arc creation algorithm.
Record their centers, radii, and endpoints. Decre-
ment i.

3. If i > 2 Go to Step 2.

4. Find M , the farthest point on O2 from v0.
Use the maxpt algorithm. This is the maxpt of C.

5. Find the maxspan. If M is an arc endpoint vn()
then the maxspan is |v0vn()| and the maxspan con-
figuration is flat. OtherwiseM is on an arc centered
at vi() and the maxspan is |v0vi()| plus the radius
of this arc. The maxspan configuration will have
one or more planar sections rotated out of Π1.

6 Computational Complexity

The operations fundamental to each step of the algo-
rithm (reflecting a point about a line, determining if a
ray intersects an arc, etc.) are all constant time op-
erations. The complexity of each step is then strictly
a function of the number of boundary arcs in each it-
eration, so as steps are repeated the complexity of the
algorithm as a whole depends on the rate of growth of
the number of boundary arcs. This is difficult to deter-
mine in general since the number of boundary arcs may
increase or decrease in each iteration. The number of

arcs on each side of Oi may be one more than double
the number in Oi+1 but may also be reduced to just
one.

For α-chains the number of boundary arcs increases
linearly. We sketch the proof as follows: In Case 2
of the boundary arc creation algorithm the maximum
number of new boundary arcs per iteration (prior to
trimming) is two for all chains, not just α-chains. Gen-
erally in Case 1 the number of new boundary arcs in Oi

can be double plus one the number in Oi+1. However
these arcs are symmetric about Li+1 and all remaining
vertices v0, v1, . . . , vi−1 are on the same side of Li+1.
So the arcs on the same side of Li+1 as the remain-
ing vertices cannot contain M by Lemma 3 and can
therefore be trimmed. In this case at most one new
arc is added in each iteration. This gives a total of
k
�n

i=1

�i
j=1 O(1) = O(n2) operations for any α-chain.

More generally the number of boundary arcs can in-
crease exponentially until trimming is required in some
iteration of the boundary arc algorithm, after which the
growth rate tends to be linear. For any given n it is
possible to create an n-chain C with exponential bound-
ary arc growth, though this can only be done with link
lengths that grow exponentially, fixed angles approach-
ing 180◦, or both. These would not likely be present
in any modeling environment. As links are repeatedly
added to any given subchain trimming will eventually
occur. So as n → ∞ the complexity tends to O(n2).
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