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Bottleneck Bichromatic Full Steiner Trees
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Abstract

Given two sets of points in the plane, Q of n (termi-
nal) points and S of m (Steiner) points, where each
of Q and S contains bichromatic points (red and blue
points), a full bichromatic Steiner tree is a Steiner tree
in which all points of Q are leaves and each edge of
the tree is bichromatic (i.e., connects a red and a blue
point). In the bottleneck bichromatic full Steiner tree
(BBFST) problem, the goal is to compute a bichromatic
full Steiner tree T , such that the length of the longest
edge in T is minimized. In k-BBFST problem, the goal
is to find a bichromatic full Steiner tree T with at most
k ≤ m Steiner points from S, such that the length of
the longest edge in T is minimized. In this paper, we
present an O((n+m) logm) time algorithm that solves
the BBFST problem. Moreover, we show that k-BBFST
problem is NP-hard and we give a polynomial-time 9-
approximation algorithm for the problem.

1 Introduction

Given a weighted graph G = (V,E) with V = Q ∪ S,
where Q and S are sets of terminal and Steiner points,
respectively, a Steiner tree is an acyclic connected sub-
graph of G spanning all vertices of Q. Informally,
Steiner points are new auxiliary nodes that can be added
to the network to improve its performance. In the classi-
cal Steiner tree problem, the goal is to find a Steiner tree
T , such that the length of the edges of T is minimized.
This problem has been shown to be NP-complete [6, 16],
and for arbitrary weighted graphs, many approximation
algorithms have been proposed [8, 18, 19].

In the geometric context, i.e., Q and S are disjoint
sets of points in the plane, G is the complete graph over
V = Q ∪ S, and the weight of each edge (p, q) in G
is the Euclidean distance between p and q. Arora [4]
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showed that the geometric Steiner tree problem can be
efficiently approximated close to optimal.

A Steiner tree is full if all terminals are leaves of
the tree. In the bottleneck full Steiner tree problem
(BFST), the goal is to compute a full Steiner tree with
minimum bottleneck (i.e., the length of the longest
edge). The k-BFST problem is a restricted version of
the BFST problem, for which, in addition to the sets
Q and S, we are given a positive integer k, and the
goal is to compute a full Steiner tree T with at most
k Steiner points such that the bottleneck of T is min-
imized. Abu-Affash [1] gave a O((n + m) log2 m) al-
gorithm for the BFST problem and showed that the
k-BFST problem is NP-hard but admits a polynomial-
time 4-approximation algorithm. Later, Biniaz et al [10]
gave an O((n+m) logm) algorithm for the BFST prob-
lem.

We consider the BFST and the k-BFST problems in
bichromatic point sets. Given two sets of points in the
plane; a set Q of n red and blue terminals and a set S
of m red and blue Steiner points, the goal in the bot-
tleneck bichromatic full Steiner tree (BBFST) problem
is to find a full Steiner tree T such that each edge in T
connects a red and a blue point and the bottleneck of
T is minimized. We refer to this tree as a bichromatic
full Steiner tree. In the k-BBFST problem, the goal is
to compute a bichromatic full Steiner tree T with at
most k Steiner points, such that its bottleneck is min-
imized, where k ≤ m is a given positive integer. The
bichromatic input appeared in many geometric prob-
lems; for example, red-blue intersection [3], red-blue
separation [5, 12, 14, 15], and red-blue connection prob-
lems [2, 7, 11].

In this paper, we show how to generalize the algo-
rithms in [1] to solve the BBFST problem and to ap-
proximate the k-BBFST problem. More precisely, we
present an O((n + m) logm) algorithm that solves the
BBFST problem, we show that the k-BBFST problem
is NP-hard, and we give a polynomial-time that approx-
imates it within a factor 9.

2 Exact Algorithm for BBFST

Given a set Q of n red and blue terminals and a set
S of m red and blue Steiner points in the plane, we
present an O((n +m) logm) time algorithm that com-
putes a bichromatic full Steiner tree of minimum bottle-
neck. We refer to such a tree as an optimal bichromatic
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full Steiner tree of Q.
Let QR and QB be the sets of red and blue termi-

nal points of Q, respectively. Similarly, let SR and SB

be the sets of red and blue Steiner points of S, respec-
tively. We assume that neither SR nor SB is empty.
Let MST (S) be a minimum-weight bichromatic span-
ning tree of S (i.e., of the complete bichromatic graph
of SR and SB). Let S(T ) be the set of Steiner points in
a bichromatic full Steiner tree T .

Lemma 1 There exists an optimal bichromatic full
Steiner tree T ∗ of Q, such that MST (S(T ∗)) is a sub-
tree of MST (S).

Proof. Let T be an optimal bichromatic full Steiner
tree of Q. Let e = (pr, pb) be an edge in MST (S(T ))
but not in MST (S). Let P be the path between pr
and pb in MST (S). We know that, each edge in P is of
length at most |prpb|. Moreover, if T ∪P creates a cycle,
then this cycle contains e. We add the edges of P to
T and we break the produced cycles (by removing the
longest edge from each cycle) to obtain a new optimal
bichromatic full Steiner tree. By repeating this process
for each edge e ∈ MST (S(T )) \MST (S), we obtain an
optimal bichromatic full Steiner tree T ∗ satisfying the
lemma. �

Let e1, e2, . . . , em−1 be the edges ofMST (S) sorted in
non-decreasing order by their length. For an edge ei ∈
MST (S), let Ti be the forest obtained from MST (S)
by deleting all edges of length greater than |ei| from
MST (S). By Lemma 1, there exists an optimal bichro-
matic full Steiner tree T ∗ of Q such that MST (S(T ∗))
is a tree of Ti, for some edge ei ∈ MST (S). Thus,
by performing binary search on the lengths of edges of
MST (S), we can find a forest Ti that contains a tree
T , such that, by connecting each point in Q to its clos-
est point of opposite color in T , we obtain an optimal
bichromatic full Steiner tree of Q.

Let λ be the bottleneck of the optimal bichromatic
full Steiner tree. For an edge ei ∈ MST (S), we decide
in O(n + m) time whether |ei| > λ or |ei| ≤ λ, using
the procedure of [10]. (In order to handle the case that
λ < |e1| or λ > |em−1|, we add the values |e0| = 0
and |em| = ∞ to the search space.) Therefore, we can
find an 0 ≤ i ≤ m − 1, such that |ei| < λ ≤ |ei+1| in
O((n + m) logm) time. If |ei| < λ < |ei+1|, then the
optimal bichromatic full Steiner tree of Q is obtained
by a tree T from the forest Ti; see Figure 1(a). If λ =
|ei+1|, then the optimal bichromatic full Steiner tree
of Q is obtained by a tree T from the forest Ti+1; see
Figure 1(b). Thus, in both cases, we can find the tree
T in the set Ti ∪ Ti+1, such that, by connecting each
terminal in Q to its closest point of opposite color in T ,
we obtain an optimal bichromatic full Steiner tree of Q.
We conclude by the following theorem.

(a)

ei

ei+1

λ

(b)

ei ei+1

terminals Steiners

Figure 1: The optimal full bichromatic Steiner tree is
obtained (a) from Ti, when |ei| < λ < |ei+1| and (b)
from Ti+1, when λ = |ei+1|.

Theorem 2 The BBFST problem can be solved in
O((n+m) logm) time.

3 Approximation Algorithm for k-BBFST

Given two sets of points in the plane; a set Q of n red
and blue terminal points, a set S of m red and blue
Steiner points, and a positive integer k ≤ m, the goal
in the k-BBFST problem is to compute a bichromatic
full Steiner tree with at most k Steiner points from S
and its bottleneck is minimized. In this section, we first
prove that the k-BBFST problem is NP-hard. Then,
we present a polynomial-time approximation algorithm
with performance ratio 9.

3.1 Hardness proof

We prove the following theorem.

Theorem 3 The k-BBFST problem is NP-hard.

Proof. We adopt that proof of Abu-Affash [1] for the
k-BFST problem. The proof is based on a reduction
from the problem Connected vertex cover in pla-
nar graphs with maximum degree 4 which is NP-
complete [17]. Given a planar graph G = (V,E) with
vertex degree at most 4 and an integer k, does there
exist a vertex cover V ∗ for G such that |V ∗| ≤ k and
the subgraph of G induced by V ∗ is connected?

Given a planar graph G = (V,E) with vertex degree
at most 4 and an integer k, we construct, in polynomial
time, two sets Q and S and compute an integer k�, such
that G has a connected vertex cover of size at most k
if and only if there exists a bichromatic full Steiner tree
T of Q with at most k� Steiner points and bottleneck at
most 1.

Let G = (V,E) be a planar graph with vertex de-
gree at most 4 and let k be an integer. Let V =
{v1, v2, . . . , vn} and E = {e1, e2, . . . , em} be the vertices
and the edges of G, respectively. We first embed G into
a rectangular grid, with distance at least 4 between ad-
jacent vertices. Each vertex vi ∈ V corresponds to some
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grid vertex and each edge e = (vi, vj) ∈ E corresponds
to a rectilinear path pe, consisting of some horizontal
and vertical elementary grid segments, whose endpoints
are the grid vertices corresponding to vi and vj . In ad-
dition, these paths are pairwise disjoints; see Figure 2.
This embedding can be done in O(n) time and the size
of the grid is at most n− 2 by n− 2; see [20].

vi

vj

e
vi

vj
pe

(a) (b)

Figure 2: (a) A planar graph G = (V,E), and (b) the
embedded graph G� = (V �, E�) of G.

For each vertex vi ∈ V we replace v by a blue
Steiner point v�i; see Figure 3. Let V � = {v�1, v�2, . . . , v�n}
be the set of these Steiner points, and let E� =
{pe1 , pe2 , . . . , pem} be the set of edges (paths) corre-
sponding to the edges of E. We now place two types
of points on the interior of each edge pe ∈ E�. Let |pe|
denote the total length of the grid segments of pe. We
place |pe| − 1 bichromatic Steiner points (red and blue
points alternatively) on pe, such that the distance be-
tween any adjacent points is exactly 1, and denote by
s(e) this set of Steiner points. Moreover, for each set
s(e), we place a red terminal between (in the middle of)
every two adjacent points in s(e). Denote by t(e) this
set of terminals and notice that |t(e)| = |pe| − 2; see
Figure 3. Finally, we set

Q =
�

e∈E

t(e) ,

S = V � ∪
�

e∈E

s(e) and

k� =
�

e∈E

|s(e)|−m+ 2k − 1 .

For each edge pe ∈ E�, let c(e) be the set of Steiner
points in s(e) except the endpoints, i.e., except the first
and the last points. Observe that, connecting every ad-
jacent two Steiner points in c(e) (to form a bichromatic
path) and connecting each terminal in t(e) to its closest
blue Steiner point in c(e) produces a bichromatic full
Steiner tree of t(e) with |s(e)| − 2 Steiner points and
bottleneck 1. On the other hand, observe that at least
|s(e)| − 2 Steiner points are necessary to construct a
bichromatic full Steiner tree of t(e) with bottleneck at

Te

v�i

v�j

Steinersterminals

Figure 3: The produced sets: V �, s(e), and t(e). Te is
the bichromatic full steiner tree of t(e).

most 1. Denote by Te such a bichromatic full Steiner
tree; see Figure 3.

Clearly, the number of points in Q ∪ S is O(n4).
Therefore, the reduction can be done in polynomial
time. We now prove the correctness of the reduction.
Suppose that G has a connected vertex cover V ∗ with
|V ∗| ≤ k. We construct a bichromatic full Steiner tree
of Q as follows. For each edge e ∈ E, we construct
the tree Te (as described above). Let T � be any span-
ning tree of the subgraph of G induced by V ∗. This
spanning tree exists by the connectivity of V ∗ and con-
tains |V ∗| − 1 edges. For each edge e = (vi, vj) ∈ T �,
we connect the corresponding points v�i, v

�
j ∈ S (by

two edges of length 1) to the tree Te using their ad-
jacent (first and last) points in s(e). And, for each edge
e = (vi, vj) ∈ E \ T �, we select one endpoint vi of e
that belongs to V ∗ and we connect v�i (by an edge of
length 1) to the tree Te using its adjacent red Steiner
point in s(e). It is easy to see that the constructed
tree is a bichromatic full Steiner tree of Q and it has
|V ∗|+�

e∈E(|s(e)|−2)+2(|V ∗|−1)+m− (|V ∗|−1) ≤�
e∈E |s(e)| −m + 2k − 1 = k� Steiner points and bot-

tleneck exactly 1.

Conversely, suppose that there exists a bichromatic
full Steiner tree T of Q with at most k� Steiner points
and bottleneck at most 1. Let V ∗ be the subset of points
of V � that appear in T , and let T � be the subtree of
T spanning V ∗. For each subset t(e) ⊆ Q, let Te be
the subtree of T spanning the points in t(e). Since the
bottleneck of T is at most 1, (i) by the above obser-
vation, Te contains at least |s(e)| − 2 Steiner points,
and (ii) each tree Te is connected to at least one point
from V ∗, which implies that the set of vertices in G
corresponding to the points in V ∗ is a connected vertex
cover of G. Moreover, a tree Te which is also a sub-
tree of T � is connected to two points from V ∗ via the
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endpoints of s(e) (there are |V ∗| − 1 such trees), and
a tree Te which is not a subtree of T � is connected to
one point from V ∗ via one endpoint of s(e) (there are
m − (|V ∗| − 1) such trees). Thus, T contains at least
|V ∗|+�

e∈E(|s(e)|− 2) + 2(|V ∗|− 1) +m− (|V ∗|− 1)
Steiner points. On the other hand, T contains at most
k� =

�
e∈E |s(e)|−m+ 2k − 1 Steiner points. This im-

plies that V ∗ is of size at most k, which completes the
proof. �

3.2 Approximation algorithm

We devise a polynomial-time approximation algorithm
for computing a bichromatic full Steiner tree with at
most k Steiner points (k-BFST for short), such that
its bottleneck is at most 9 times the bottleneck of an
optimal k-BFST.

Let QR and QB be the sets of red and blue terminal
points of Q, respectively. Similarly, let SR and SB be
the sets of red and blue Steiner points of S, respectively.
We assume that SR and SB contains at least one red
and one blue point, respectively. Let G = (V,E) be
the graph with V = Q ∪ S and E = (QR × SB) ∪
(QB × SR)∪ (SR × SB). We assume, w.l.o.g., that E =
{e1, e2, · · · , el}, such that |e1| ≤ |e2| ≤ · · · ≤ |el|. Notice
that, the bottleneck of an optimal k-BFST is a length
of an edge from E. For an edge ei, Let Gi = (V,Ei) be
the graph, such that Ei = {ej ∈ E : |ej | ≤ |ei|}. We
devise a procedure which either constructs a k-BFST of
Q in G with bottleneck at most 9 times |ei| or it says
that Gi does not contain a k-BFST of Q.

Let G2
i be the 2nd power graph of Gi, i.e., G

2
i has

the same set of vertices as Gi and an edge between two
vertices if and only if there is a path that contains at
most 2 edges between them in Gi. Let G2

i (Q) be the
sub-graph of G2

i induced by Q and let Q� be a maximal
independent set in G2

i (Q). Notice that, since all the
edges in E are bichromatic, a red terminal and a blue
terminal cannot be connected to a same Steiner point in
Gi. Hence, a red terminal and a blue terminal cannot be
connected to each other in G2

i . Thus, if |Q�| = 1, then
Q contains points of one color and we can construct a
k-BFST of bottleneck at most 3|ei| as follows. Let p be
the only point in Q� and assume, w.l.o.g., that p is a red
point. We select a blue Steiner point s that is connected
to p in Gi and we connect it to all points of Q. Since
there is an edge in G2

i between p and each other point
q ∈ Q, we have |pq| ≤ 2|ei|, and therefore, |sq| ≤ 3|ei|.

Thus, we assume that |Q�| > 1. For any two points
p, q ∈ Q, let δi(p, q) be the path between p and q in Gi

that contains minimum number of Steiner points. Let
G� = (Q�, E�) be the complete graph over Q�. For each
edge (p, q) in E�, we assign a weight w(p, q) which is
equal to the number of Steiner points in δi(p, q). Let
MST (G�) be the minimum spanning tree of G� under
w. We define the normalized weight of MST (G�) as

W (MST (G�)) =
�

e∈MST (G�) �w(e)/2�.

Lemma 4 If Gi contains a k-BFST of Q�, then
W (MST (G�)) ≤ k

Proof. Let T be a k-BFST of Q� in Gi. We construct
a spanning tree T � of G� such that W (T �) ≤ k. We start
by T and we transform it into T � by an iterative process.
We start by selecting an arbitrary Steiner point as the
root of T ; see Figure 4. In each iteration, we select the
deepest leaf p in the rooted tree, which is a terminal, and
we connect it to its closest terminal q by an edge (p, q)
of weight equal to the number of Steiner points between
them. Let s be the lowest common ancestor of p and
q. We then remove the Steiner points between p and
s. In the last iteration, we remove all of the remaining
points.

For example, in Figure 4, we show a construction of
T � from T . In iteration 1, we select p1, connect it to p2
by an edge of weight 4 and remove the points between
p1 and s1. In iteration 2, we select p3, connect it to p4
by an edge of weight 4, and remove the points between
p3 and s2. In iteration 3, we select p6, connect it to p5
by an edge of weight 3, and remove the points between
p6 and s3. In iteration 4, we select p5, connect it to p4
by an edge of weight 6, and remove the points between
p5 and s4. In the last iteration, we select p2, connect
it to p4 by an edge of weight 5, and remove the all the
remaining points between p2 and p4.

p1

p2

p3

p4

p5 p6

s1 s2

s3

s4

Steinersterminals

Figure 4: Constructing T � from T .

Since, in each iteration, we select the deepest ter-
minal, we add to T � an edge (p, q) of weight w(p, q),
and we remove at least �w(p, q)/2� Steiner points from
T . Thus, we have W (T �) =

�
e∈T � �w(e)/2� ≤ k. Fi-

nally, since T � is also a spanning tree of G�, we have
W (MST (G�)) ≤ W (T �) ≤ k. �

We now describe the algorithm. For each edge ei ∈ E
in the sorted order, we construct the graphs Gi, G

2
i , and

G2
i (Q). Then, we compute a maximal independent set

Q� in G2
i (Q). If |Q�| = 1, then we construct a k-BFST

of Q with bottleneck at most 3 times |ei|. Otherwise,
we construct the complete graph G� over Q�, and we
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compute a minimum spanning tree MST (G�) of G� with
respect to the weight function w. If W (MST (G�)) > k,
then we proceed to the next edge ei+1. Otherwise, we
construct a k-BFST of Q with bottleneck at most 9
times |ei| as follows.

For each edge (p, q) ∈ T , there is a bichromatic path
δi(p, q) between p and q in Gi that contains w(p, q)
Steiner points. We select �w(p, q)/2� Steiner points on
any shortest Steiner path between p and q in Gi by the
following procedure.

We select an arbitrary leaf p in MST (G�) and
we traverse MST (G�) starting from p. Let q
be the point that is connected to p in MST (G�).
Set S� = ∅. We call the recursive procedure
SelectSteiners(p, q, color(p), S�) (Procedure 1) that se-
lects at most k Steiner points and adds them to S�; see
also Figure 5.

Procedure 1 SelectSteiners(p, q, color, S�)

1: j ← w(p, q)
2: let s1, s2, . . . , sj be the Steiner points in δi(p, q)
3: x ← 0
4: if color(s1) �= color then
5: i ← 1
6: else
7: i ← 2
8: while i+ 3x ≤ j do

S� ← S� ∪ {si+3x}
x ← x+ 1

9: for each (q, t) ∈ MST (G�), such that t �= p do
SelectSteiners(q, t, color(si+3(x−1)), S

�)

It is not hard to see that for each edge (p, q) in
MST (G�), we add to S� at most �w(p, q)/2� Steiner
points. Therefore, |S�| ≤ k. Next, we construct a
minimum-weight bichromatic spanning tree MST (S�)
of S� (i.e., of the complete bichromatic (Euclidean)
graph over S�). Notice that, each edge in MST (S�) is of
length at most 5|ei|; see Figure 5. Finally, we connect
each terminal in Q to its nearest opposite color Steiner
point in S� to obtain a bichromatic full Steiner tree.
This guarantees that each terminal in Q� is connected
to a Steiner point with an edge of length at most 7|ei|;
see Figure 5, and each terminal in Q \ Q� is connected
to a Steiner point with an edge of length at most 9|ei|.

Remark. If Q� contains only one red and one blue
points p and q, respectively, k = 2, and MST (G�) is
a path between p and q that contains exactly 2 Steiner
points, a blue Steiner point s1 and a red Steiner point
s2, then we construct a k-BFST by connecting all the
points in QR to s1 and all the points in QB to s2. This
k-BFST contains exactly 2 Steiner points and its bot-
tleneck is at most 3|ei|.

p

q

s1

s2
s3s4
s5

s1

s2s1

s2
s3

p

q

s1

s2
s3s4

s1

s2
s3

s1

s2

s3
s4

p

q

s1

s2
s3s4
s5

s1

s2s1

s2
s3

s6

(a) (b)

(c)

terminals

Steiners

Figure 5: Illustrating the selection of the Steiner points
in Procedure 1.

Lemma 5 Our algorithm constructs a k-BFST of Q
with bottleneck at most 9 times the bottleneck of an op-
timal k-BFST.

Proof. Let ei ∈ E be the first edge satisfying W (T ) ≤
k. Thus, by Lemma 4, the bottleneck of any k-BFST
in G is at least |ei|. Therefore, the constructed k-BFST
has a bottleneck at most 9 times the bottleneck of an
optimal k-BFST. �

Lemma 6 Our algorithm runs in polynomial time.

Proof. Notice that, for each edge ei ∈ E, the third
power graph G2

i is of size O((n+m)2). Thus, G2
i can be

computed from Gi in O((n + m)2) time, and comput-
ing a maximal independent set Q� in G2

i (Q) also takes
O((n + m)2) time. The construction of G� on Q� can
be done in O((n +m)3) time, by computing the short-
est Steiner paths between each pair of points in Q� [13].
Computing a minimum spanning tree of G� can be done
in O(n2) time. Procedure 1 runs in O(k(n+m)) time.
the construction of the obtained full Steiner tree can be
done in O((n+ k) log k). Therefore, the algorithm runs
in polynomial time. �

The following theorem summarizes the result of this
section.

Theorem 7 The above algorithm computes a k-BFST
with bottleneck at most 9 times the bottleneck of an op-
timal k-BFST in polynomial time.
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